R Workshop

Lecture 5: More advanced functionality in R and R Studio, Part II

May 17, 2024

1 Regular expressions

Often, when you are working with large amounts of data, and are trying to subset based on some aspects of your data, you have restrictons on strings that you want to implement. For example, you want to subset to all words/sentences that begin with a "p", or all words/sentences that have the sequence "can" or all words/sentences that have exactly 4 letters. This is where regular expressions help. Now, I can't teach you everything about regular expressions in a few minutes, but I want to give you a flavour of what's possible.

As with all things in R, there are multiple ways to do this in R, and I will teach you one way using the grep1() function. I'll use a built in data set — iris, which gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.

With the following, we can filter to all the rows where the column Species has an "e" in them.

```
iris %>%
filter(grepl(pattern="e",x=Species))
```

If you want to rows where the *Species* start with a "v" (for example), you need to let the grepl() function know that the sequence you are looking for is at the beginning using a carat "^".

With the following, we can filter to all the rows where the column Species has an "e" in them.

```
iris %>%
filter(grepl(pattern="^v",x=Species))
```

What if you wanted any word that starts with a "vi" or an "se"?

```
iris %>%
filter(grepl(pattern="^(vi|se)",x=Species))
```

What if you want all the words with a certain number of letters? The "." marks a letter that you don't know. Below, I will filter to all the words with 6 letters. You can use the beginning (" $^{"}$ ") and ending ("\$"") symbols along with the wild-card (".") character.

```
iris %>%
filter(grepl(pattern="^.....$",x=Species))
```

There is so much more...See here.

2 Converting R output to LATEX code with stargazer()

stargazer is a great package. If you use the main function stargazer() with a data.frame, then it will spit out a summary of that data.frame.

I will use another built in data set — mtcars, which has fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

```
#To get
# Stargazer can output any data.frame in LaTeX code
mtcars %>%
stargazer()
```

The output of the relevant L^{ATEX} code is the following. Note, the caption is empty, but you can fill it with what you want.

Table 1:						
Statistic	Ν	Mean	St. Dev.	Min	Max	
mpg	32	20.091	6.027	10.400	33.900	
cyl	32	6.188	1.786	4	8	
disp	32	230.722	123.939	71.100	472.000	
hp	32	146.688	68.563	52	335	
drat	32	3.597	0.535	2.760	4.930	
wt	32	3.217	0.978	1.513	5.424	
qsec	32	17.849	1.787	14.500	22.900	
VS	32	0.438	0.504	0	1	
am	32	0.406	0.499	0	1	
gear	32	3.688	0.738	3	5	
carb	32	2.812	1.615	1	8	

If you want the original data.frame, then set the *summary* argument to F. You can also control other arguments like *digits* — please look at the Help for all the arguments.

```
#To get
# Stargazer can output any data.frame in LaTeX code
mtcars %>%
stargazer(summary=F,digits=1)
```

The output of the above code is the following:

	mpg	cyl	disp	hp	drat	wt	qsec	\mathbf{VS}	am	gear	carb
Mazda RX4	21	6	160	110	3.9	2.6	16.5	0	1	4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.9	17.0	0	1	4	4
Datsun 710	22.8	4	108	93	3.9	2.3	18.6	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.1	3.2	19.4	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.1	3.4	17.0	0	0	3	2
Valiant	18.1	6	225	105	2.8	3.5	20.2	1	0	3	1
Duster 360	14.3	8	360	245	3.2	3.6	15.8	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.7	3.2	20	1	0	4	2
Merc 230	22.8	4	140.8	95	3.9	3.1	22.9	1	0	4	2
Merc 280	19.2	6	167.6	123	3.9	3.4	18.3	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.9	3.4	18.9	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.1	4.1	17.4	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.1	3.7	17.6	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.1	3.8	18	0	0	3	3
Cadillac Fleetwood	10.4	8	472	205	2.9	5.2	18.0	0	0	3	4
Lincoln Continental	10.4	8	460	215	3	5.4	17.8	0	0	3	4
Chrysler Imperial	14.7	8	440	230	3.2	5.3	17.4	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.1	2.2	19.5	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.9	1.6	18.5	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.2	1.8	19.9	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.7	2.5	20.0	1	0	3	1
Dodge Challenger	15.5	8	318	150	2.8	3.5	16.9	0	0	3	2
AMC Javelin	15.2	8	304	150	3.1	3.4	17.3	0	0	3	2
Camaro Z28	13.3	8	350	245	3.7	3.8	15.4	0	0	3	4
Pontiac Firebird	19.2	8	400	175	3.1	3.8	17.0	0	0	3	2
Fiat X1-9	27.3	4	79	66	4.1	1.9	18.9	1	1	4	1
Porsche 914-2	26	4	120.3	91	4.4	2.1	16.7	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.8	1.5	16.9	1	1	5	2
Ford Pantera L	15.8	8	351	264	4.2	3.2	14.5	0	1	5	4
Ferrari Dino	19.7	6	145	175	3.6	2.8	15.5	0	1	5	6
Maserati Bora	15	8	301	335	3.5	3.6	14.6	0	1	5	8
Volvo 142E	21.4	4	121	109	4.1	2.8	18.6	1	1	4	2

Table 2:

```
#First, get the output of a model
model = mtcars %>%
    lmer(formula=mpg~gear*wt + (1|am))
#Now, we have to extrac the model output
#Then convert that into a data.frame
#Then, we can use the stargazer() function
summary(model)$coefficients %>%
    data.frame() %>%
    stargazer(summary=F,digits=1)
```

The output of the above code is the following:

		-	
	Estimate	StdError	t.value
(Intercept)	17.4	11.1	1.6
gear	5.6	2.9	1.9
\mathbf{wt}	1.4	3.3	0.4
gear:wt	-2.0	0.9	-2.2

Table 3: