
R Workshop
Lecture 4: Some more advanced functionality in R and R Studio

May 14, 2024

1 Creating a Project in RStudio
The main issue that a Project is trying to solve is the issue of analysis transportability. Let’s say you want
to move your analysis files and data to another folder, or if you want to share it with someone else, but you
open a lot of files in your R script, then you or the someone else needs to go in and change all the directories
in the R script. OK, you can say, why not put a variable or setwd() at the beginning of the file that people
can change, and yes you can do that. But, if you set up your Project correctly, you won’t even need to do
that, and you don’t have to worry about directory information at all while writing/running the script.

To create a project, go to File/New Project…. If you are creating a new project, then choose “New
Project”, but you can also convert an existing directory into a project by choosing “Existing Project”.

OK, let’s continue under the assumption that you are creating a new project. It will create a folder and
an .Rproj file in that folder. This file contains any project settings that you might opt for, but you really
don’t have to work with it if you don’t want to. That’s it. You should now store your R-script and data in
the new folder.

If you want to work with the script, click on the .Rproj file and then go to Files in the plots panel in R
Studio and then click on the R script that you want to work with. That’s it. Everything that you do in the
R script will be relativised to the folder that the .Rproj file is in. So, if there is a .csv file that you want to
open, and it is in the same folder, you can just mention the file name in the read.csv() function. Similarly,
if you save a plot and just save it with the file name, it will save to the folder with the .Rproj (but see the
last section (Section 4) for more nuance on this).
Advanced tip: You can manually move the .Rproj to another folder, if you want to make it the project

folder.

2 Just a clarification on tidyverse functions
Earlier we talked about using the summarise() function, but we only talked about how to summarise a single
new function. But, the technique extends to multiple columns or multiple calculations quite easily. Let’s
use mtcars, which is a built-in dataset in R. Suppose you want to find the means of two separate columns
(mpg, drat) for each gear value, you could write the code as follows:

mtcars %>%
group_by(gear) %>%
summarise(meanMPG = mean(mpg),

meanDrat = mean(drat))

A tibble: 3 x 3
gear meanMPG meanDrat
<dbl> <dbl> <dbl>
1 3 16.1 3.13
2 4 24.5 4.04
3 5 21.4 3.92

1

You can also use a similar syntax to get two separate summarisations for the same column. Suppose you
want to find the mean and the median for each gear value for the column mpg:

mtcars %>%
group_by(gear) %>%
summarise(meanMPG = mean(mpg),

medianMPG = median(mpg))

A tibble: 3 x 3
gear meanMPG medianMPG
<dbl> <dbl> <dbl>
1 3 16.1 15.5
2 4 24.5 22.8
3 5 21.4 19.7

3 Advanced data munging
3.1 Merging multiple datasets
Suppose you have two sets of data with the same columns, but different values, subjects,… and want to merge
the two data sets.

You can open the two data sets and then use the bind_rows() function from tidyverse. But, for it to
work, both the data sets must have the same column names. If the column names are different, you will
need to munge each data.frame separately to get them to have the same column names before combining
them.

Data1 = read.csv("Lecture4-data1.csv")
head(Data1)

Sub Type Measure1 Measure2
1 1 a -47.219235 -4.382947
2 2 b 16.153117 21.857513
3 3 c -4.891709 -24.159874
4 4 a 91.678481 -3.006118
5 5 b 14.697127 -10.528346
6 6 c 34.863009 -2.385930

Data2 = read.csv("Lecture4-data2.csv")
head(Data2)

Sub Type Measure1 Measure2
1 103 a 3.978076 -19.350869
2 104 b 10.315312 1.676916
3 105 c 8.210829 44.077843
4 106 a 17.867848 -1.728683
5 107 b 10.169713 31.071891
6 108 c 12.186301 -26.449843

#Now you can merge the two datasets into one lengthwise
FullData = Data1 %>%

bind_rows(Data2)

2

3.2 Coding your data with more information
Suppose you have a .csv file, and for each measurement or each stimulus, you want to add some more
information, you can just have mutate function with embedded conditionals.

#Modifying the data.frame directly
FullDataCoded = FullData %>%

mutate(NewInfo = ifelse(Type == "a", "Old",
ifelse(Type == "b", "Recent",

ifelse(Type == "c", "New",NA))))
head(FullDataCoded)

Sub Type Measure1 Measure2 NewInfo
1 1 a -47.219235 -4.382947 Old
2 2 b 16.153117 21.857513 Recent
3 3 c -4.891709 -24.159874 New
4 4 a 91.678481 -3.006118 Old
5 5 b 14.697127 -10.528346 Recent
6 6 c 34.863009 -2.385930 New

Advice: You can also use case_when(). Some people prefer using this function, but I hate learning new
commands unless I have to. Try to do as much with as little as you can — it will help you practice/remember
coding in R better)

But, another nice way to do it is to create a separate data.frame and then merge it with your data.
Let’s say that you want to add some more coding information about each Type in your data from above.

#New coding data.frame
coding = data.frame(Type = letters[1:3],

NewInfo = c("Old","Recent","New"),
NewInfo2 = c("Slow","Medium","Fast"))

#Now merging the new coding data.frame
FullDataCoded = FullData %>%

full_join(coding)

Joining with `by = join_by(Type)`

head(FullDataCoded,by=c("Type"))

Sub Type Measure1 Measure2 NewInfo NewInfo2
1 1 a -47.219235 -4.382947 Old Slow
2 2 b 16.153117 21.857513 Recent Medium
3 3 c -4.891709 -24.159874 New Fast
4 4 a 91.678481 -3.006118 Old Slow
5 5 b 14.697127 -10.528346 Recent Medium
6 6 c 34.863009 -2.385930 New Fast

In fact, if you have the coding file as a separate .csv file, you could just open it and then merge it with
your data.

#new coding file
coding = read.csv("Lecture4-coding.csv")

#Now merging the new coding data.frame

3

FullDataCoded = FullData %>%
full_join(coding)

Joining with `by = join_by(Type)`

head(FullDataCoded)

Sub Type Measure1 Measure2 NewInfo NewInfo2
1 1 a -47.219235 -4.382947 Old Slow
2 2 b 16.153117 21.857513 Recent Medium
3 3 c -4.891709 -24.159874 New Fast
4 4 a 91.678481 -3.006118 Old Slow
5 5 b 14.697127 -10.528346 Recent Medium
6 6 c 34.863009 -2.385930 New Fast

You should also look at the following functions: inner_join(), left_join(), right_join().

4 Writing your own functions in R
Many times, you repeat the same chunks of code again and again in your scripts. It is useful to have the
repeating code as a function that you can use. For example, maybe you want to get the same analysis and
plots for different subsets of the data. In such a case, it is extremely useful to write a function that you can
use repeatedly.

The basic anatomy of a function definition is similar to variable assignment. You define the arguments
that the functions can take it along with the instructions within the function, and then assign the function
definition a name just as if it were variable assignment.

#The basic anatomy of a function
functionName = function(arg1=..., arg2=...){

<list of instructions to excute within a function>

return(some value of interest)
}

Let’s say for some reason you wanted to write your own function to get the average of the values in a
vector. Such a function would take a vector as an argument, and then calculate the mean and return the
calculated average value.

#Defining the function
AVG_Karthik = function(x){

#Calculating the average
average = sum(x)/length(x)

#Returning the value as the output of the function
return(average)

}

#Using the function
AVG_Karthik(x=1:30)

[1] 15.5

4

#Comparing our function to the pre-defined function in R
mean(x=1:30)

[1] 15.5

OK, that was a silly example, but it was useful to see the anatomy of a function definition. Now, let’s
see if we can do a set of data processing steps and then plot something of value to us, and then save that
plot. Let’s say we want to work with something like the FullData that we had in the previous section, and
we want to first filter out some condition, and then plot a facetted scatterplot for Measure1 and Measure1
for each Type, and then finally save it.

#Defining the function
AnalysisAndPlotting = function(df){

#Data processing
dfmodified = df %>%

filter(NewInfo2 != "Fast")

#Creating a plot
#I put it in parenthesis so that I can see the output when I run the function.
plot = ggplot(dfmodified,aes(x=Measure2,y=Measure1))+

geom_point()+facet_grid(~Type)

ggsave("Lecture4-plot.png",plot,width=6,height=4,dpi=300)
}

#Running the function
AnalysisAndPlotting(df = FullDataCoded)

If you are using a Project, then the plot will get saved to the base project folder. Or you can specify
a sub-folder within your Project folder for just figures, and then you would have to include the sub-folder
information along with the file name.

#Defining the function
AnalysisAndPlotting = function(df){

#Data processing
dfmodified = df %>%

filter(NewInfo2 != "Fast")

#Creating a plot
#I put it in parenthesis so that I can see the output when I run the function.
plot = ggplot(dfmodified,aes(x=Measure2,y=Measure1))+

geom_point()+facet_grid(~Type)

ggsave("figures/Lecture4-plot.png",plot,width=6,height=4,dpi=300)
}

#Running the function
AnalysisAndPlotting(df = FullDataCoded)

Advice: Make sure to have all your function definitions in one place at the top, separate from the actual
data analysis. That will lead to a nicer workflow. You can also put all the function definitions in a separate
r file and then use source() to be able to use all the functions in that file in your current file. See here for
more information on this.

5

https://www.geeksforgeeks.org/how-to-use-the-source-function-in-r/
https://www.geeksforgeeks.org/how-to-use-the-source-function-in-r/

5 Lazy but useful
You might have noticed that some times I include the argument name with a function, and other times I
don’t. This is me being lazy. What I am doing is using the default semantics of R. If you input the arguments
to any function, in the order that they are defined in the function definition, then you don’t need to include
the argument name. For example, the function mean() has multiple arguments; see Help. However, if I
input the arguments in the order that they are defined in, then I don’t need to specify the argument name.

#With argument names
mean(x=c(1:20))

[1] 10.5

#Without argument names
mean(c(1:20))

[1] 10.5

It is a really useful/clever functionality of R. But, the price to pay for the flexible semantic interpretation
is that of more vigilance. If you are going to be lazy, then make sure that you have entered the arguments
in the right order. Below, when the arguments are named properly, everything works well. In the second
example, the second unnamed argument is of logical type but it gets assigned to trim which is the second
argument in the function definition — this causes an error because trim has to be numeric. However, if the
argument accidentally happens to be of the same type, then you won’t get an error though you did something
wrong. So be careful, if you are going to be lazy.

#With argument names
mean(x=c(1:20),na.rm=T)

[1] 10.5

#Without argument names, but in the wrong order
mean(c(1:20),T)

Error in mean.default(c(1:20), T): 'trim' must be numeric of length one

6

	Creating a Project in RStudio
	Just a clarification on tidyverse functions
	Advanced data munging
	Merging multiple datasets
	Coding your data with more information

	Writing your own functions in R
	Lazy but useful

