R Workshop

Lecture 2: Basics of R (continued) and tidyverse functions

May 10, 2024

1 Quick review

printing, vectors, data.frames, conditionals, ... Discuss use of paste() and assign() to create new
variable names in loops (see here for more).

2 Working with pre-collected data using tidyverse

The functions below are part of the dplyr library, which is loaded when you load tidyverse.

2.1 The right packages/libraries need to be installed and used

Packages/libraries are repositories of other functions that might be useful for us. There are literally
thousands of such libraries for R. We are going to use a collection of packages called the tidyverse - when
we install and load this library, we will be able to use the many libraries and functions developed or inspired
by the work of Hadley Wickham.

The following command installs packages/libraries. [Note: the quotes are necessary.]
install.packages("tidyverse")
It is not enough to install a library in R; you also have to “load” it in every session you want to use it. When

you run the command, you will get a set of lines that look like the following, don’t worry, it’s just loading
the relevant libraries associated with tidyverse. [Note: No quotes here.]

library(tidyverse)

—-- Attaching core tidyverse packages ———————————————————————- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.0 v tibble 3.2.1

v lubridate 1.9.3 v tidyr 1.3.1

v purrr 1.0.2

—— Conflicts —————————————————————————— tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

1 Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts
to become errors

Advice: Put all the install.packages and library commands at the beginning of your script. This way,
you will know what all libraries are used in your script.

https://www.google.com/search?client=safari&rls=en&q=changing+variable+names+in+forloop+in+r&ie=UTF-8&oe=UTF-8

2.2 Reading in data

Advice: You should try to store your data in a csv file (comma separated values), if possible. The file
format is easy to work with it, and can really be opened by a variety of different programs.

To open a csv file that is in a particular directory, you will need to “set the working directory” with the
function setwd (), and then use the read_csv() file to open the data. If you do this correctly, you will see

a data.frame names measurements in your environment list.

Note: There are other functions like read.csv() that can be used too. I am just teaching you one of them.

setwd("/.../.../.../")

measurements = read_csv("Measurements.csv")

Rows: 36 Columns: 5

—-- Column specification —————————————————————— - - —————
Delimiter: ","

chr (2): Vowel, Speed

dbl (3): Subject, ConsonantiDuration, Consonantl2Duration

##

1 Use “spec()” to retrieve the full column specification for this data.

1 Specify the column types or set “show_col_types = FALSE™ to quiet this message.

Above, I encouraged you to use the csv file type, but every now-and-then, it is easier to work with other file
types (xlsx, spss data, ...). In those cases, there are other libraries or functions that you can use. If you
want to open an xlsx file, then you need to use the following function:

library(readxl)

setwd("/.../.../.../")

measurements = read_excel ("Measurements.xlsx",sheet=1)

library(readxl)

measurements = read_excel ("Measurements.xlsx",sheet=1)

2.3 Getting information about your data.frame

There are many ways you can view or get information about your data.frame

#Viewing only the first "n" rows of your data
head (measurements, 10)

A tibble: 10 x 5

Subject Vowel Speed ConsonantliDuration Consonant2Duration
#it <dbl> <chr> <chr> <dbl> <dbl>
o1 1 ae FAST 60.0 52.4
2 1 ae NORMAL 65.6 64.0
3 1 ae SLOW 64.6 56.2
4 1o FAST 69.8 62.2
5 1o NORMAL 74.0 69.8
6 1o SLOW 76.0 69.4
T 3 ae FAST 70.2 62.2
8 3 ae NORMAL 70.6 58.2
9 3 ae SLOW 65.3 59.5
10 3 o0 FAST 65.7 67.3

#The default is 6 Tows
head (measurements)

A tibble: 6 x 5
Subject Vowel Speed ConsonantliDuration Consonant2Duration

<dbl> <chr> <chr> <dbl> <dbl>
1 1 ae FAST 60.0 52.4
2 1 ae NORMAL 65.6 64.0
3 1 ae SLOW 64.6 56.2
4 1 FAST 69.8 62.2
5 1o NORMAL 74.0 69.8
6 1o SLOW 76.0 69.4

#If you want to see some general information about each column
summary (measurements)

H# Subject Vowel Speed Consonant1Duration
Min. :1 Length:36 Length:36 Min. :56.52

1st Qu.:3 Class :character Class :character 1st Qu.:63.07

Median :5 Mode :character Mode :character Median :65.68

Mean :5 Mean :66.34

3rd Qu.:7 3rd Qu.:69.92

Max. :9 Max. :77.08

Consonant2Duration

Min. :52.39

1st Qu.:58.94
Median :62.09
Mean :62.27
3rd Qu.:66.83
Max. :73.50

If you want to view all the data in a separate tab in RStudio, then use View(name of data.frame).

2.4 Subsetting to only some rows of your data.frame

Sometimes, you want to remove some of the data because it is not relevant to the analysis you are performing.
Let’s say that in our dataset, I want to get only the “SLOW?” values. Then, we do the following. First, we
select the relevant data.frame, and then pipe/chain a filter() function to it with the piping function

%>%.

#Selects only the "SLOW" walues
measurements2 = measurements %>%
filter(Speed == "SLOW")

If you want everything but the ”"SLOW?” values, then:

#Selects only the "SLOW" walues
measurements2 = measurements %>%
filter(Speed != "SLOW")

2.5 Selecting only some columns of your data.frame

Let’s say you have a gigantic data.frame, with lots of columns, but you are interested only in some columns,
then it makes sense to remove everything else for current purposes. It would be a terrible idea to delete it
from the original csv file, as we might lose the data forever; it is better to do it in R, so that the elimination
is just temporary.

#Selects only the relevant columns
measurements2 = measurements %>%
select (Subject,Vowel,Speed,Consonant1Duration)

If you want to both filter rows and select columns, then use the pipe twice:

#Filter and then select only the relevant columns
measurements2 = measurements %>%

filter(Speed != "SLOW") %>%

select (Subject,Vowel,Speed,Consonant1Duration)

#If all the selected columns are adjacent to one another,

#you can use the ":" mnotation
measurements?2 = measurements %>%
filter(Speed != "SLOW") %>%

select (Subject:ConsonantiDuration)

2.6 Arranging your data in descending or ascending order according to some
column of your data.frame

To view the data, sometimes it makes sense to arrange it in descending or ascending order according to some
column(s) in your data.frame. In which case, we can use arrange.

#Arranges in ascending order according to the column "Speed"
measurements3 = measurements2 %>%

arrange (Speed)
head (measurements3)

A tibble: 6 x 4

Subject Vowel Speed ConsonantlDuration
#i <dbl> <chr> <chr> <dbl>
1 1 ae FAST 60.0

2 1o FAST 69.8

3 3 ae FAST 70.2
4 3 o0 FAST 65.7
5 4 ae FAST 64.2
6 4 0 FAST 66.7

#Arranges in descending order according to the column "Speed"
measurements3 = measurements2 %>%

arrange (desc(Speed))
head (measurements3)

A tibble: 6 x 4
Subject Vowel Speed ConsonantlDuration

<dbl> <chr> <chr> <dbl>
1 1 ae NORMAL 65.6
2 1o NORMAL 74.0
3 3 ae NORMAL 70.6
4 3 o0 NORMAL 66.6
5 4 ae NORMAL 67.3
6 4 o NORMAL 7.1

#You can do more complex arrangements
#descending (alphabetic) order for "Speed"”, and then ascending order for "ConsonantlDuration”
#Note: the order matters
measurements3 = measurements2 %>%
arrange (desc(Speed) ,ConsonantiDuration)
head (measurements3)

A tibble: 6 x 4
Subject Vowel Speed ConsonantlDuration

<dbl> <chr> <chr> <dbl>
1 9 ae NORMAL 56.5
2 9 o NORMAL 57.7
3 7 o NORMAL 61.5
##t 4 7 ae NORMAL 63.6
5 6 ae NORMAL 64.4
6 1 ae NORMAL 65.6

2.7 Creating a new column in your data.frame

Sometimes, it is useful to create a new column in your data.frame(): maybe you want to create some new
column, or you want to keep track of some information in the data.

#Creates a new column with the same value
measurements3 = measurements2 %>%

mutate (NewValue = 1)
head (measurements3)

A tibble: 6 x 5
Subject Vowel Speed ConsonantlDuration NewValue

<dbl> <chr> <chr> <dbl> <dbl>
1 1 ae FAST 60.0 1
2 1 ae NORMAL 65.6 1
3 1o FAST 69.8 1

4 1o NORMAL 74.0 1
5 3 ae FAST 70.2 1
6 3 ae NORMAL 70.6 1

#Creates a new column where the value depends on another column.
#In this case, using the function "ifelse()" inside mutate is super useful in the long run.
measurements3 = measurements2 %>%
mutate(NewValue = ifelse(ConsonantliDuration<65, yes="Low", no="High"))
head (measurements3)

A tibble: 6 x 5
Subject Vowel Speed ConsonantlDuration NewValue

<dbl> <chr> <chr> <dbl> <chr>
1 1 ae FAST 60.0 Low

2 1 ae NORMAL 65.6 High
3 1o FAST 69.8 High
4 1o NORMAL 74.0 High
5 3 ae FAST 70.2 High
6 3 ae NORMAL 70.6 High

2.8 Summarising your data.frame

This is extremely useful, if you want to get average values for participants or some combination of column
values. It requires the use of two functions group_by() and summarise()/summarize().

#Summarising the data with the mean value for each participant
measurements3 = measurements2 %>%

group_by(Subject) %>%

summarise (MeanSubjectValue = mean(ConsonantiDuration))
head (measurements3)

A tibble: 6 x 2
Subject MeanSubjectValue

<dbl> <dbl>
#it 1 1 67.4
2 3 68.3
3 4 68.8
4 6 69.9
5 7 61.1
6 9 59.3

#Summarising the data with the mean value for each participant for each speed
measurements3 = measurements2 %>%

group_by (Subject,Speed) %>%

summarise (MeanSubjectValue = mean(ConsonantiDuration))

“summarise()” has grouped output by 'Subject’. You can override using the
~.groups” argument.

head (measurements3)

A tibble: 6 x 3
Groups: Subject [3]
Subject Speed MeanSubjectValue

##
##
#i#
#Hit
Hit
##
##

D O WN -

<dbl> <chr> <dbl>

1 FAST 64.9
1 NORMAL 69.8
3 FAST 68.0
3 NORMAL 68.6
4 FAST 65.4
4 NORMAL 72.2

3 Some useful references

You should keep a copy of the dplyr cheatsheet with you — it’s super helpful!

4 Homework

(a)

(b)

i.

1. Find the error in each of the following pieces of code:

When trying to print “Hello World!” 6 times:

for(i within c(1:6)){
print("Hello World!")
}

When trying to exclude subjects numbered 10 or above from the Subject column from a
data.frame named FEzperimentData:

ExperimentData %>
filter(Subject < 10)

When trying to include just some specific values from a column named Subject column from a
data.frame named FzxperimentData:

ExperimentData %>%
filter(Subject = 1)

This is not quite an ‘error’, but it is still not what you should be doing. When trying to get
the mean value for each Subject of a column named ReactionTime from a data.frame named
EzxperimentData:

ExperimentData %>%
group_by(Subect) %>%
mutate (MeanReactionTime = mean(ReactionTime))

2. Open the data.frame that we used in class (uploaded to D2L), and then exclude the Conso-
nantlDuration column from the data.frame. Note, write the code using tidyverse functions and
the piping function.

3. Write a script using tidyverse functions that does the following things. Make sure to comment your
script properly.

Create a data frame named Data with 3 columns and a 100 rows

e 15 column named Subject: the values 1 to 100.

e 27 column named Position: Repeat two items “A” and “B”, so that all even subjects are A,
and all odd subjects are B. So toggle between the two.

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

ii.

iii.

iv.

o 3" column named Values: the values 1001 to 1100 in that order.
Use tidyverse functions to subset to only the rows that have Position as “A”.

Now, use tidyverse functions to create a new column named New Values with the values 2001 to
2050.

Now, use tidyverse functions to find the mean of all the remaining values in the column.

Combine the above steps ii-iv into one long chain of commands with the piping function, and
assign it to a new data frame named Data2.

	Quick review
	Working with pre-collected data using tidyverse
	The right packages/libraries need to be installed and used
	Reading in data
	Getting information about your data.frame
	Subsetting to only some rows of your data.frame
	Selecting only some columns of your data.frame
	Arranging your data in descending or ascending order according to some column of your data.frame
	Creating a new column in your data.frame
	Summarising your data.frame

	Some useful references
	Homework

