R Workshop

Lecture 1: Basics of Programming in R

May 9, 2024

1 How to print stuff

There are actually a few ways in which you can do this in R, but I will discuss only one way that is probably
easy to remember. As you become more proficient in R, you can figure out the other ways :).
Note: Anything after “#” on a line is ignored. So, if it very useful for commenting.

print("Hello World!")

[1] "Hello World!'"

2 Assignment in R
There are at least two ways in which assignment is done in R.

1. The traditional way (the prescriptivists love it)
x <-1

2. The other way (the prescriptivists hate it; but I love it)
x=1

I will use the second way throughout. But, this comes down to individual preference. So, feel free to use
the other one if you are more used to it. One important thing: be consistent about your choice so that you
don’t confuse yourself.

Note: For most purposes, both work the same way. You can read about some subtle difference about the
scope of operation amongst other things on Stack Overflow.

3 Some useful datatypes in R

3.1 vectors (or Arrays)

A vector is a collection of similar elements (integers, decimal point numbers, characters, factors, ...). Below
I have created different vectors with just a single value each.

x = c(4)
print(x)

[1] 4

https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-in-r
https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-in-r

y = c("a")
print (y)

[1] llall

Now, we can see more complex vectors with multiple elements:
x = ¢(5,6,7,8)

print(x)

[1] 56 7 8

y = c("a" , npn s nen s "d")

print (y)

[1] llall llbll IICII Ildll

3.1.1 Understanding vector math (and vector operations more generally)

R works off vectors, such that almost all of the functions naturally work with vectors. Let’s work with
addition and subtraction.

Create two new integer vectors:

X
y

c(5,6,7,8)
c(1,2,3,4)

Now, try to add the vectors:
X +y
[1] 6 8 10 12

If the vectors are of different lengths, then R throws a “warning”. But, it automatically cycles through the
shorter vector so that they are the same length.

x = ¢(5,6,7)
y = c(1,2,3,4)
X +y

Warning in x + y: longer object length is not a multiple of shorter object length

[1] 6 8 10 9

3.2 data.frame

A data.frame is a collection of vectors, where each column is a different vector. For example, we can
take the above vectors and make them a data.frame.

#Integer wvectors
x = c(5,6,7,8)
y = c(1,2,3,4)

#Making a data.frame
data = data.frame(x, y)

print(data)
xy
1 5 1
2 6 2
3 7 3
4 8 4

You can also create the data.frame directly, i.e., without creating the vectors first:

#Making a data.frame directly
#You can put the two wectors on the same line too, but 2t %s nicer to read this way.
data = data.frame(x = c(5,6,7,8),

y = ¢(1,2,3,4))

print(data)
xy
1 5 1
2 6 2
3 7 3
4 8 4

But, note the different vectors of the data.frame have to be of the same length, otherwise you will get an
error. Try the following;:

#Making a data.frame
#Two dtifferent types of wvectors in the same data.frame
data = data.frame(x = c¢(5,6,7),

y = c(1,2,3,4))

Error in data.frame(x = c(5, 6, 7), y = c(1, 2, 3, 4)): arguments imply differing
number of rows: 3, 4

You can create a data.frame with diffent types of vectors, as long as all the elements within a vector are
the same type of element:

#Making a data.frame directly

data2 = data.frame(x = c("a","b","c","d"),
y = c(1,2,3,4))

print(data?2)

=+

=+

N
Q0 T e X
DN R

4 Subsetting with data types

By “subsetting”, I mean getting a part of the data from that data type.

4.1 Subsetting from a vector

For vectors, you can mention the position of the element or a range of elements within square brackets to
identify the corresponding element.

X = C(”a",”b”,”C”,"d”)

x[3]

[1] llcll

x[3:4]

[1] llcll lldl’

x[c(1,3,4)]

[1] llall IICII lldll

4.2 Subsetting from a data.frame

For a data.frame, there are a few ways in which you can subset. I will teach you one way that I think will
be useful in the long run. Use the “$” to isolate the column/vector in the data.frame, and then use the
bracket notation to isolate the values of interest.

C("a”,”b”,”c”,”d”,”e”,”f”) s
c(6:11))

data3 = data.frame(x
y

data3$x[3]

[1] llcll

data3$x[3:4]

[1] ”C” lldll

data3$x[c(1,3,4)]
[1] "a" "c" "g"

What if you didn’t know the name of the column, but knew the column number?

Advice: Though it is logically possible that you don’t know the name of some column, and I show you
how to access information in such a case. Honestly speaking, if you don’t know the column names, then
you should look at your data more carefully. There is no point trying to do data analysis if you don’t know
what you are analysing. For this reason the “$” notation is going to be almost always the preferred way of
referring to columns.

data3[4,1]

[1] lldll

5 Useful programming elements

5.1 Conditionals or if..else statements

These are useful if you want to do something only if something else is TRUE/FALSE. For example, print
“Hello World”, if the 3rd value of a vector is equal to 6.

x = c(4,7,6,1,2,10)

if(x[3] == 6){
print("Hello World")
}

[1] "Hello World"

if (x[3] >= 6){
print("Hello World")
}

[1] "Hello World"

if(x[3] > 6){
print("Hello World")
}

if(x[3] <= 6){
print("Hello World")
}

[1] "Hello World"
if(x[3] < 6){
print("Hello World")

}

Conditionals can also have an “else” part that is done if the conditional is FALSE.

#Creating vector
x = c(4,7,6,1,2,10)

#Bastc conditional
For "equal to'", there meed to be two "=".
if (x[3] == 7){
print ("Hello, World!")
Yelse{
print ("Hi, fool!")
}

[1] "Hi, fool!"

5.2 Loops or for statements

These are useful if you want to do something multiple times. There are many types of loops in R (for loops,
while loops, repeat loops, ..), but we will only work with for loops as these are likely to work for most
looping issues you might face. for loops require a counter of some sort within them, as they execute a set of
commands a prespecified number of times. Below, I use the counter or variable “i”, but you could use any
name/word that you think is clear.

#Basic for loop
for(i in c(1:6)){
print ("Hello")

}

[1] "Hello"
[1] "Hello"
[1] "Hello"
[1] "Hello"
[1] "Hello"
[1] "Hello"

#Using "1f statements” within "for loops" affords a lot more power

#Create wvector
x = c(1:6)

#Looping thru each value and checking if the wvalue matches "4"
for(i in x){

if(i == 4){
print("Yippie!")
Yelse{
print(": (")
}
}
[1] "o
[1] " ("
[1] " ("
[1] "Yippie!"
[1] "o ("
[1] "o

6 Some useful references

A lot of doubts/questions you will have are very likely already answered online. Search for whatever your
doubt is and include “Stack Overflow” or “Cross Validated” to your search string on Google. It will most
probably show you links to the solutions to the problem/doubt on the online community Stack Overflow
or Cross Validated, which are both fantastic online communities for programming or statistics related info,
respectively.

7 Homework

1. Find the error in each of the following pieces of code:

(a)

(b)

When trying to print a string, and you write the following;:

print (Hello World!)

What is the output of the following code? This is not quite an ‘error’, but explain the output and
why that was the output.

x = ¢(5,6,7)
y <- c¢(1,2,3,4,5)
X+y

Note: You can use ‘<-’ or ‘=’ as an assignment operator. Try it for yourself — both work. The
former is largely due to historical reasons having to do with keyboard layouts. I will use the
second way throughout this course. But, this comes down to individual preference. So, feel free
to use the other one if you are more used to it. One important thing: be consistent about your
choice so that you don’t confuse yourself.

For most purposes, both work the same way. You can read about some subtle difference about
the scope of operation amongst other things on Stack Overflow.

When identifying a particular value in a vector, and you write the following:

values = c('Happy',"Sad","Apathetic","Hyper")
values(3)

Note: While you can use either single quotes or double quotes to assign character/string values
in vector, I would recommend being consistent.

When calculating the mean, and you write the following:"

values = c(1, 2, 3, 5 6)
mean (values)

When creating a data.frame, and you write the following

randomData = data.frame(x = c(5,6,7),
y = c(1,2,3,4,5))

When your write the following conditional statement to print the number 10 if x = 5.

x=5
if(x = 5){
print (10)

1This exercise was inspired by a similar exercise in Bodo Winter’s textbook.

https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-in-r
https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-in-r

(g) When trying to loop through the same instructions multiple times

for(2025_counter in c(1:25)){
print (10)
}

2. Write a program to do the following in the order listed. Make sure to comment your code well.

A First create a data.frame named experiment with 3 columns (names = Subj, Group, Reaction-
Time)
B There should be 10 values in each column.
i. Column 1: the numbers 101-110.
ii. Column 2: the letters “A” and “B” alternated.
iii. Column 3: any 10 random non-integer numbers.
C Assign whatever is the 6" value of the last column (ReactionTime) of the data.frame to a new
variable named answer. [Note, you need to use the data.frame experiment and the column
name (ReactionTime) in your code for this task, and you need to be able to write the code so

that it prints out the right value even if you didn’t know what was in that particular position of
the data.frame.]

(a) Print the value in the variable answer.

	How to print stuff
	Assignment in R
	Some useful datatypes in R
	vectors (or Arrays)
	Understanding vector math (and vector operations more generally)

	data.frame

	Subsetting with data types
	Subsetting from a vector
	Subsetting from a data.frame

	Useful programming elements
	Conditionals or if…else statements
	Loops or for statements

	Some useful references
	Homework

