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1 Experiment 1: Extra Information

1.1 Stimuli

Word frequencies were obtained from SubtlexUS (Brysbaert and New, 2009). The mean loge

frequencies for experimental items did not differ significantly between the Related and Unrelated

conditions for any of the POA conditions for either primes or targets (Table 1).
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POA Prime/Target Related Unrelated Difference Welch test

Bilabial Prime 2.63 2.76 -0.13 [t(23)=-0.3, p=0.77]

Bilabial Target 2.50 2.80 -0.30 [t(23)=-0.87, p=0.39]

Alveolar Prime 2.86 2.71 0.15 [t(20.4)=0.35, p=0.73]

Alveolar Target 3.13 3.11 0.02 [t(20.0)=0.07, p=0.95]

Velar Prime 2.59 3.18 -0.59 [t(19.9)=-1.35, p=0.19]

Velar Target 3.22 3.07 0.15 [t(18.6)=0.39, p=0.70]

Table 1: Mean loge frequencies of the prime/target words for different POA.

1.2 Model selection procedure

We attempted to obtain the maximal random-effects structure that was justified by the data (Barr,

Levy, Scheepers, and Tily, 2013). However, as is typical in psycholinguistic data (and in our own

experience), the models with the most complex random-effects structures did not converge. It is

important to note that the field and the statistical literature in general have not come to a consensus

on how to best proceed in identifying the best random-effects structure, especially when a model

with a particular random-effects structure does not converge (Bolker, 2014). In what follows,

we describe the random-effects structure selection process that we used for our experiments by

following other experienced linear mixed-effects modelers in psycholinguistics (Barr et al., 2013).

We identified the appropriate random-effects structure by keeping the fixed-effects constant - we

used the full fixed-effects model for the experiment (i.e., with interactions for all the fixed-effects).

We started with the most complex random-effects structure. In the case of nonconvergence of the

complex random-effects model, we systematically pared down the random-effects structure, by

first removing varying slopes related to interaction terms and then removing those related to non-

interaction terms, until convergence was reached. The least complex random-effects structure we

entertained was one with a varying intercept for both subjects and items. When convergence was
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reached, the corresponding random-effects model was identified to be the maximal random-effects

structure justified by the data.

Model comparison to identify the best combination of fixed-effects was performed through

backwards elimination of nonsignificant terms, beginning with the interactions, through a chi-

squared test of the log likelihood ratios. The most complex fixed-effects model entertained was

the full model with all interaction terms, and the least complex model entertained was the model

with only an intercept term and no fixed-effects. It is important to note that it is not appropriate to

use likelihood tests for non-nested models; however, there is no simple way to present the actual

comparisons made, so we chose to present it in the order of ascending degrees of freedoms for the

models. For example, in Table 2, there is no p-value associated with the 1+POA row; the pairwise

comparison with the previous model (namely, fixed-effects = 1 + TargetType) does not constitute

a comparison of nested models, and is therefore left blank.

In Table 2, we present the pairwise comparisons between nested models comparing the model

on the line that has particular p-value with the model in the previous line. As can be seen, the best

model based on a chi-squared test of the log likelihood ratios is the model with just an intercept

in the fixed-effects structure, since there was no significant improvement of the model when the

various factors were added. Furthermore, the lowest BIC value is also the model with just an

intercept in the fixed-effects structure. This suggests that none of the differences between the

Unrelated and Related words were significant. This in turn suggests that there are no clear priming

effects.

3



Fixed-effects BIC χ2 df Pr(> χ2)

Intercept -24

1 + TargetType -19.6 3.0 1 0.08

1 + POA -14.8 2.7 1

1 + POA + TargetType -10.3 3.0 1 0.08

1 + POA + TargetType + POA*TargetType 3.0 1.7 2 0.42

Table 2: Comparison of linear mixed-effects models for Experiment 1. P-values
correspond to legitimate pairwise comparisons between nested models comparing
the model on the line that has particular p-value with the model in the previous
line.

Finally, in response to a question from an anonymous reviewer, we also did the same analyses

with the raw reaction time values as the dependent variable. Again, the best model based on a chi-

squared test of the log likelihood ratios is one with just an intercept in the fixed-effects structure

(Table 3), since there was no significant improvement of the model when the various factors were

added. Furthermore, this model also had the lowest BIC value. And the model had a Bayes Factor

of 12.1 compared to the next best model, again suggesting that it was indeed the best model for the

data.
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Fixed-effects BIC χ2 df Pr(> χ2)

Intercept 24805

1 + TargetType 24810 2.57 1 0.11

1 + POA 24815 1.88 1

1 + POA + TargetType 24820 2.58 1 0.11

1 + POA + TargetType + POA*TargetType 24834 1.86 2 0.39

Table 3: Comparison of linear mixed-effects models for Experiment 1 with raw
reaction times as the dependent measure. P-values correspond to legitimate pair-
wise comparisons between nested models comparing the model on the line that
has particular p-value with the model in the previous line.

Although the analyses with both the loge RTs and the raw RTs showed the same pattern of

support for the model with just an intercept in the fixed-effects structure, we suggest that the results

from the analysis with loge RTs are more reliable, as the residuals of the final model were more

normally distributed.

1.3 Normality testing

While standard tests for checking the normality of residuals allow for easy rejection of the null

hypothesis (that the residuals are drawn from a population that is normally distributed), we can use

graphical checks to see if the loge transform results in residuals that are closer to being normally

distributed than the raw values (Anglim, 2016). In Table 1, we plotted the standardized residuals

of the best models based on both the loge transformed values and the raw values. The black line

represents the abstract standard normal distribution. As can be seen, the residuals for the best

model based on the loge transformed values are much closer to being normal than the residuals for

the best model based on raw reaction time values.
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Figure 1: Comparison of standardized residuals of the raw reaction time values
and the loge transformed values with the standard normal distribution for Experi-
ment 1.

Stimuli for Experiment 1

Velar stimuli

Related Unrelated
Prime Target Non-Prime Target
game came mart cart
gore core joy coy
call gall forge gorge
curl girl chide guide
cap gap lit kit
coat goat lord gourd
cold gold pang gang
gave cave dill kill
gab cab base case

come gum ding king
gain cane van can
gable cable rule cool

Alveolar stimuli

Related Unrelated
Prime Target Non-Prime Target

dart tart gape tape
sip zip coo zoo
tore door park dark

zoom doom hair dare
sigh tie room tomb
toon soon gauge sage
sink zinc burn turn
sent tent vote tote
zing sing vole soul
time dime fog dog
den zen cone zone

dummy tummy more tour
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Bilabial stimuli

Related Unrelated
Prime Target Non-Prime Target

pat bat tang bang
ball mall leak peek
bale pale rink pink
pill bill cord bored
peat beet torn born
mean bean node bode
pore bore tell bell
bear pear dent pent
bad mad job mob
bun pun runt punt

balm palm zest pest
patch batch shark bark
pen men

2 Experiment 2: Extra Information

2.1 Stimuli

Again, the mean loge frequencies for target words did not differ significantly between the Related

and Unrelated conditions for any of the POAs for either primes or targets (Table 4).
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POA Prime/Target Related Unrelated Difference Welch test

Bilabial Prime 2.90 3.01 -0.11 [t(22)=-0.3, p=0.77]

Bilabial Target 2.86 2.84 0.02 [t(11.6)=0.08, p=0.94]

Alveolar Prime 2.80 2.64 0.16 [t(19.3)=0.46, p=0.65]

Alveolar Target 2.97 2.97 0 [t(20.8)=0, p=1]

Velar Prime 3.04 2.94 0.1 [t(22.2)=0.2, p=0.79]

Velar Target 2.92 2.88 0.04 [t(23)=0.1, p=0.91]

Table 4: Mean loge frequencies of the prime/target words for different POAs.

The neighborhood densities for pairs of words were controlled for as much as possible. The

log10 Kucera-Francis (KF) frequency weighted densities were obtained from the Irvine Phonotactic

Online Dictionary v. 1.4 (Vaden, Halpin, and Hickok, 2009). These values did not differ signif-

icantly between the Related and Unrelated conditions for each POA for either primes or targets

(Table 5). It is worth pointing out that the difference in values for the Velar primes and targets

are marginally significant, suggesting that there is the possibility of a sufficient departure from the

null hypothesis expectation of “no difference” for each comparison; however, foreshadowing the

results somewhat, this does not seem to have affected the pattern of results, as ultimately we did

not find any effect of priming for any of the POA conditions.
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POA Prime/Target Related Unrelated Difference Welch test

Bilabial Prime 29.2 24.3 4.9 [t(22.8)=-0.72, p=0.48]

Bilabial Target 34.0 27.3 6.7 [t(20.9)=1.00, p=0.33]

Alveolar Prime 28.3 30.8 -2.5 [t(18.7)=-0.36, p=0.72]

Alveolar Target 23.1 29.7 -6.6 [t(17.7)=-1.00, p=0.33]

Velar Prime 39.0 28.9 10.1 [t(22.9)=2.05, p=0.06]

Velar Target 33.0 24.4 8.6 [t(22.9)=2.03, p=0.06]

Table 5: Neighborhood densities (log10 Kucera-Francis (KF) frequency weighted
densities) of the prime/target words for different POA.

2.2 Model selection procedure

As can be seen in Table 6, the best model, based on a chi-squared test of the log likelihood ratios,

is one with just an intercept and no other fixed-effects, since there was no significant improvement

of the model when the various factors were added.1

Fixed-effects BIC χ2 df Pr(> χ2)

Intercept 113.2

1 + TargetType 120.9 0.0002 1 0.99

1 + POA 128.2 0.38 1

1 + POA + TargetType 135.9 0.002 1 0.96

1 + POA + TargetType + POA*TargetType 150.2 1.07 2 0.59

Table 6: Comparison of linear mixed-effects models for Experiment 2. P-values
correspond to legitimate pairwise comparisons between nested models comparing
the model on the line that has particular p-value with the model in the previous
line.

1Similar to the results for Experiment 1, in Table 6, there is no p-value associated with the 1+POA row; the pair-
wise comparison with the previous model (namely, fixed-effects = 1 + TargetType) does not constitute a comparison
of nested models, and is therefore left blank.
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Finally, we also did the same analyses with the raw reaction time values as the dependent

variable. Again, the best model based on a chi-squared test of the log likelihood ratios and the

lowest BIC value is one with just an intercept in the fixed-effects structure (Table 7). And the model

had a Bayes Factor of 42.5 compared to the next best model, again suggesting strong evidence in

favor of the simplest model (Raftery, 1995).

Fixed-effects BIC χ2 df Pr(> χ2)

Intercept 92.3

1 + TargetType 99.8 0.2 1 0.65

1 + POA 106.9 0.53 1

1 + POA + TargetType 114.4 0.24 1 0.63

1 + POA + TargetType + POA*TargetType 128.5 1.34 2 0.51

Table 7: Comparison of linear mixed-effects models for Experiment 2 with raw
reaction times as the dependent measure. P-values correspond to legitimate pair-
wise comparisons between nested models comparing the model on the line that
has particular p-value with the model in the previous line.

2.3 Normality testing

As with Experiment 1, we can use informal visual checks to see if the loge transform result in

residuals that are more normally distributed than with the raw values (Anglim, 2016). In Table 2,

we plotted the standardized residuals of the best models based on both the loge transformed values

and the raw values. The black line represents the abstract standard normal distribution. As can be

seen, the residuals for the best model based on the loge transformed values are much closer to being

normal than the residuals for the best model based on raw reaction time values. This suggests, as

in Experiment 1, that the results for the analysis with loge transformed reaction times are more

trustworthy.
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Figure 2: Comparison of standardized residuals of the raw reaction time values
and the loge transformed values with the standard normal distribution for Experi-
ment 2.

Stimuli for Experiment 2

Velar stimuli

Related Unrelated
Prime Target Non-Prime Target
code goad pang gang
call gall bit kit
curl girl till gill
cap gap pun gun
cane gain tape gape
coat goat duel cool
cold gold tide guide
game came base case
gore core bite kite
gave cave bowl coal
gab cab boy coy
gage cage pate gate

ding king

Alveolar stimuli

Related Unrelated
Prime Target Non-Prime Target
time dime cog dog
tuck duck beer tear
tip dip pier dear
tore door cot dot

tomb doom cope dope
tame dame curt dirt
die tie gown town
dart tart goal toll
dank tank bang tang
dent tent boat tote
den ten gag tag
dean teen bone tone
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Bilabial stimuli

Related Unrelated
Prime Target Non-Prime Target
park bark toss boss
path bath toil boil
pelt belt ton bun
pour bore tell bell
patch batch cord board
pill bill torn born
peg beg guest pest
ban pan gale pale
bin pin dine pine
bear pair guy pie
bad pad geek peak
box pox deep peep

balm palm
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