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1 Experiment 1: Extra Information

1.1 Stimuli

Word frequencies were obtained from SubtlexUS (Brysbaert and New, 20009). The mean log,
frequencies for experimental items did not differ significantly between the Related and Unrelated

conditions for any of the POA conditions for either primes or targets (Table ).
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POA  Prime/Target Related Unrelated Difference Welch test

Bilabial Prime 2.63 2.76 -0.13 [#(23)=-0.3, p=0.77]
Bilabial Target 2.50 2.80 -0.30 [#(23)=-0.87, p=0.39]
Alveolar Prime 2.86 2.71 0.15 [#(20.4)=0.35, p=0.73]
Alveolar Target 3.13 3.11 0.02 [£(20.0)=0.07, p=0.95]
Velar Prime 2.59 3.18 -0.59 [#(19.9)=-1.35, p=0.19]
Velar Target 322 3.07 0.15 [#(18.6)=0.39, p=0.70]

Table 1: Mean log. frequencies of the prime/target words for different POA.

1.2 Model selection procedure

We attempted to obtain the maximal random-effects structure that was justified by the data (Barr!
Levy, Scheepers, and Tily, 2013). However, as is typical in psycholinguistic data (and in our own
experience), the models with the most complex random-effects structures did not converge. It is
important to note that the field and the statistical literature in general have not come to a consensus
on how to best proceed in identifying the best random-effects structure, especially when a model
with a particular random-effects structure does not converge (Bolked, 20T4). In what follows,
we describe the random-effects structure selection process that we used for our experiments by
following other experienced linear mixed-effects modelers in psycholinguistics (Barref all, DO173).
We identified the appropriate random-effects structure by keeping the fixed-effects constant - we
used the full fixed-effects model for the experiment (i.e., with interactions for all the fixed-effects).
We started with the most complex random-effects structure. In the case of nonconvergence of the
complex random-effects model, we systematically pared down the random-effects structure, by
first removing varying slopes related to interaction terms and then removing those related to non-
interaction terms, until convergence was reached. The least complex random-effects structure we

entertained was one with a varying intercept for both subjects and items. When convergence was



reached, the corresponding random-effects model was identified to be the maximal random-effects

structure justified by the data.

Model comparison to identify the best combination of fixed-effects was performed through
backwards elimination of nonsignificant terms, beginning with the interactions, through a chi-
squared test of the log likelihood ratios. The most complex fixed-effects model entertained was
the full model with all interaction terms, and the least complex model entertained was the model
with only an intercept term and no fixed-effects. It is important to note that it is not appropriate to
use likelihood tests for non-nested models; however, there is no simple way to present the actual
comparisons made, so we chose to present it in the order of ascending degrees of freedoms for the
models. For example, in Table D, there is no p-value associated with the 1+POA row; the pairwise
comparison with the previous model (namely, fixed-effects = 1 + TARGETTYPE) does not constitute

a comparison of nested models, and is therefore left blank.

In Table [, we present the pairwise comparisons between nested models comparing the model
on the line that has particular p-value with the model in the previous line. As can be seen, the best
model based on a chi-squared test of the log likelihood ratios is the model with just an intercept
in the fixed-effects structure, since there was no significant improvement of the model when the
various factors were added. Furthermore, the lowest BIC value is also the model with just an
intercept in the fixed-effects structure. This suggests that none of the differences between the
Unrelated and Related words were significant. This in turn suggests that there are no clear priming

effects.



Fixed-effects BIC y* df Pr(>x?)

Intercept -24

1 + TARGETTYPE -196 30 1 0.08
1 + POA -148 2.7 1

1 + POA + TarGeTTYPE -103 30 1 0.08

1 + POA + TArRGerTYPE + POA*TARGETTYPE 3.0 1.7 2 0.42

Table 2: Comparison of linear mixed-effects models for Experiment 1. P-values
correspond to legitimate pairwise comparisons between nested models comparing
the model on the line that has particular p-value with the model in the previous
line.

Finally, in response to a question from an anonymous reviewer, we also did the same analyses
with the raw reaction time values as the dependent variable. Again, the best model based on a chi-
squared test of the log likelihood ratios is one with just an intercept in the fixed-effects structure
(Table B), since there was no significant improvement of the model when the various factors were
added. Furthermore, this model also had the lowest BIC value. And the model had a Bayes Factor
of 12.1 compared to the next best model, again suggesting that it was indeed the best model for the

data.



Fixed-effects BIC y* df Pr(>x?)

Intercept 24805

1 + TARGETTYPE 24810 2.57 1 0.11
1 + POA 24815 1.88 1

1 + POA + TARGETTYPE 24820 2.58 1 0.11

1 + POA + TArRGeTTYPE + POA*TARGETTYPE 24834 1.86 2 0.39

Table 3: Comparison of linear mixed-effects models for Experiment 1 with raw
reaction times as the dependent measure. P-values correspond to legitimate pair-
wise comparisons between nested models comparing the model on the line that
has particular p-value with the model in the previous line.

Although the analyses with both the log. RTs and the raw RTs showed the same pattern of
support for the model with just an intercept in the fixed-effects structure, we suggest that the results
from the analysis with log. RTs are more reliable, as the residuals of the final model were more

normally distributed.

1.3 Normality testing

While standard tests for checking the normality of residuals allow for easy rejection of the null
hypothesis (that the residuals are drawn from a population that is normally distributed), we can use
graphical checks to see if the log, transform results in residuals that are closer to being normally
distributed than the raw values (Anglim, 2016). In Table [0, we plotted the standardized residuals
of the best models based on both the log, transformed values and the raw values. The black line
represents the abstract standard normal distribution. As can be seen, the residuals for the best
model based on the log, transformed values are much closer to being normal than the residuals for

the best model based on raw reaction time values.
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Figure 1: Comparison of standardized residuals of the raw reaction time values
and the log. transformed values with the standard normal distribution for Experi-
ment 1.

Stimuli for Experiment 1

Velar stimuli Alveolar stimuli
Related Unrelated Related Unrelated
Prime Target | Non-Prime Target Prime Target | Non-Prime Target
game  came mart cart dart tart gape tape
gore core joy coy sip zip Co0 700
call gall forge gorge tore door park dark
curl girl chide guide zoom  doom hair dare
cap gap lit kit sigh tie room tomb
coat goat lord gourd toon soon gauge sage
cold gold pang gang sink zinc burn turn
gave cave dill kill sent tent vote tote
gab cab base case zing sing vole soul
come  gum ding king time dime fog dog
gain cane van can den zen cone zone
gable  cable rule cool dummy tummy more tour




Bilabial stimuli

Related Unrelated
Prime Target | Non-Prime Target
pat bat tang bang
ball mall leak peek
bale pale rink pink
pill bill cord bored
peat beet torn born
mean  bean node bode
pore bore tell bell
bear pear dent pent
bad mad job mob
bun pun runt punt
balm  palm zest pest
patch  batch shark bark

pen men

2 Experiment 2: Extra Information

2.1 Stimuli

Again, the mean log. frequencies for target words did not differ significantly between the Related

and Unrelated conditions for any of the POAs for either primes or targets (Table ).



POA  Prime/Target Related Unrelated Difference Welch test

Bilabial Prime 2.90 3.01 -0.11 [1(22)=-0.3, p=0.77]
Bilabial Target 2.86 2.84 0.02 [#(11.6)=0.08, p=0.94]
Alveolar Prime 2.80 2.64 0.16 [#(19.3)=0.46, p=0.65]
Alveolar Target 2.97 2.97 0 [#(20.8)=0, p=1]
Velar Prime 3.04 2.94 0.1 [#(22.2)=0.2, p=0.79]
Velar Target 2.92 2.88 0.04 [#(23)=0.1, p=0.91]

Table 4: Mean log. frequencies of the prime/target words for different POAs.

The neighborhood densities for pairs of words were controlled for as much as possible. The
logo Kucera-Francis (KF) frequency weighted densities were obtained from the Irvine Phonotactic
Online Dictionary v. 1.4 (Vaden, Halpin, and Hickok,, 2009). These values did not differ signif-
icantly between the Related and Unrelated conditions for each POA for either primes or targets
(Table B). It is worth pointing out that the difference in values for the Velar primes and targets
are marginally significant, suggesting that there is the possibility of a sufficient departure from the
null hypothesis expectation of “no difference” for each comparison; however, foreshadowing the
results somewhat, this does not seem to have affected the pattern of results, as ultimately we did

not find any effect of priming for any of the POA conditions.



POA  Prime/Target Related Unrelated Difference Welch test

Bilabial Prime 29.2 243 4.9 [#(22.8)=-0.72, p=0.48]
Bilabial Target 34.0 27.3 6.7 [£(20.9)=1.00, p=0.33]
Alveolar Prime 28.3 30.8 2.5 [#(18.7)=-0.36, p=0.72]
Alveolar Target 23.1 29.7 -6.6 [#(17.7)=-1.00, p=0.33]
Velar Prime 39.0 28.9 10.1 [£(22.9)=2.05, p=0.06]
Velar Target 33.0 244 8.6 [1(22.9)=2.03, p=0.06]

Table 5: Neighborhood densities (log;y Kucera-Francis (KF) frequency weighted
densities) of the prime/target words for different POA.

2.2 Model selection procedure

As can be seen in Table B, the best model, based on a chi-squared test of the log likelihood ratios,
is one with just an intercept and no other fixed-effects, since there was no significant improvement

of the model when the various factors were added.®

Fixed-effects BIC ¥Y> df Pr(>y?)
Intercept 113.2

1 + TARGETTYPE 1209 0.0002 1 0.99

1 + POA 1282 038 1

I + POA + TaArRGETTYPE 1359 0.002 1 0.96

1 + POA + TARGETTYPE + POA*TARGETTYPE 150.2 1.07 2 0.59

Table 6: Comparison of linear mixed-effects models for Experiment 2. P-values
correspond to legitimate pairwise comparisons between nested models comparing
the model on the line that has particular p-value with the model in the previous
line.

'Similar to the results for Experiment 1, in Table B, there is no p-value associated with the 1+POA row; the pair-
wise comparison with the previous model (namely, fixed-effects = 1 + TARGETTYPE) does not constitute a comparison
of nested models, and is therefore left blank.



Finally, we also did the same analyses with the raw reaction time values as the dependent
variable. Again, the best model based on a chi-squared test of the log likelihood ratios and the
lowest BIC value is one with just an intercept in the fixed-effects structure (Table ). And the model
had a Bayes Factor of 42.5 compared to the next best model, again suggesting strong evidence in

favor of the simplest model (Raftery, 1995).

Fixed-effects BIC y* df Pr(>y?
Intercept 92.3

1 + TARGETTYPE 998 02 1 0.65

1 + POA 106.9 0.53 1

1 + POA + TaArRGETTYPE 1144 024 1 0.63

1 + POA + TARGETTYPE + POA*TARGETTYPE 128.5 1.34 2 0.51

Table 7: Comparison of linear mixed-effects models for Experiment 2 with raw
reaction times as the dependent measure. P-values correspond to legitimate pair-
wise comparisons between nested models comparing the model on the line that
has particular p-value with the model in the previous line.

2.3 Normality testing

As with Experiment 1, we can use informal visual checks to see if the log. transform result in
residuals that are more normally distributed than with the raw values (Anglim, 2016). In Table 2,
we plotted the standardized residuals of the best models based on both the log. transformed values
and the raw values. The black line represents the abstract standard normal distribution. As can be
seen, the residuals for the best model based on the log. transformed values are much closer to being
normal than the residuals for the best model based on raw reaction time values. This suggests, as
in Experiment 1, that the results for the analysis with log. transformed reaction times are more

trustworthy.
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Figure 2: Comparison of standardized residuals of the raw reaction time values

and the log. transformed values with the standard normal distribution for Experi-
ment 2.

Stimuli for Experiment 2

Velar stimuli Alveolar stimuli
Related Unrelated Related Unrelated

Prime Target | Non-Prime Target Prime Target | Non-Prime Target
code  goad pang gang time dime cog dog
call gall bit kit tuck  duck beer tear
curl girl till gill tip dip pier dear
cap gap pun gun tore door cot dot
canc gain tape gape tomb  doom cope dope
coat  goat duel cool tame  dame curt dirt
cold  gold tide guide die tie gown town
game  came base case dart tart goal toll
gore core bite kite dank  tank bang tang
gave cave bowl coal dent tent boat tote
gab cab boy coy den ten gag tag
gage cage pate gate dean teen bone tone

ding king
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Bilabial stimuli

Related Unrelated
Prime Target | Non-Prime Target
park bark toss boss
path bath toil boil
pelt belt ton bun
pour bore tell bell
patch  batch cord board
pill bill torn born
peg beg guest pest
ban pan gale pale
bin pin dine pine
bear pair guy pie
bad pad geek peak
box pox deep peep

balm  palm
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