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Abstract

How exactly do learners generalize in the face of ambiguous data? While there has been
a substantial amount of research studying the biases that learners employ, there has been very
little work on what sorts of biases learners employ in the face of data that is ambiguous between
phonological generalizations with different degrees of simplicity/complexity. In this article,
we present the results from 3 artificial language learning experiments that suggest that, at least
for phonotactic sequence patterns, learners are able to keep track of multiple generalizations
related to the same segmental co-occurrences; however, the generalizations they learn are only

the simplest ones that are consistent with the data.
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1 Introduction

Natural language data that children and adults learn from almost invariably have multiple com-
peting generalizations. Even when one narrows their focus to only a particular segmental co-
occurrence pattern, it becomes immediately apparent that there are multiple possible generaliza-
tions that are consistent with the pattern. Of course, this is not a novel insight, and it is a question
that many have grappled with in the past. However, the observation does raise the question that is
of primary importance to this article. That is, how exactly do people generalize in the face of data
that is ambiguous between generalizations of varying simplicity/complexity? The experiments pre-
sented in this article suggest that, at least for phonotactic sequence patterns, learners are able to keep
track of multiple generalizations related to the same segmental co-occurrences; however, the gen-
eralizations they learn are only the simplest ones that are consistent with the data, where ‘simplest’
is defined as the use of the fewest representational primitives needed to state the generalization.

With regard to phonotactic patterns, there is considerable evidence that both infants and adults
possess phonotactic knowledge of their native languages. This knowledge has been probed through
phonotactic judgments of nonce words (Jusczyk et al. [1993; Scholes [1966), through word-segmentation
tasks (Friederici and Wessels 1993; McQueen 1998), and through perceptual illusions (Dupoux et
al. 1999; Kabak and Idsardi 2007). There is also evidence that this phonotactic knowledge involves
not just segmental patterns, but also more abstract, natural class or featural patterns (Albright 2009;
Moreton 2002).

The paradigm of artificial language learning (ALL) has been especially fruitful in probing the
kinds of patterns that both children and adults learn in the domain of phonotactic learning. There
is again substantial evidence now that exposure to words with particular patterns during a train-
ing phase of an ALL experiment is sufficient for children and adults to generalize the patterns to
novel words (Chambers et al. 2003). Results from such experiments also suggest that, in line with

typological asymmetries, people are able to employ ‘substantive biases’ in generalizing from the

'In what follows, we only cite representative work related to phonotactic learning; for a more general review of
ALL across a variety of linguistic domains, see Culbertson (2012) and Folia et al. (2010), and, for a more general
review of the ALL literature on phonological learning, see Moreton and Pater (2012a,b).



training data (Becker et al. 2011; Moreton 2008; Wilson 2006). Beyond substantive biases that
are in line with typological asymmetries, learners in such experiments also appear to exhibit what
might be called ‘structural biases’; i.e., they exhibit different phonotactic learning biases over dif-
ferent representations (Bergelson and Idsardi 2009; Chambers et al. 2012). Finally, in line with
what has been observed for native language phonotactics, learners in ALL experiments also seem
to learn featural generalizations; i.e., they are able to access more abstract generalizations than
segment sequence generalizations (Cristia et al. 2011; Finley and Badecker 2009). One common
theme to much of the research on biases that we just discussed is that they are more directly related
to substantive issues, either regarding typological asymmetries, or representational issues.

Given that ALL experiments show such similarity to research on native language phonotactics,
they provide a nice alternative, beyond modeling, to understand formal inductive biases employed
by a learner during the acquisition of phonotactic patterns. Here, too, there is some recent work
probing the issue. Research suggests that, for both adults and children, simpler (particularly, single-
feature) generalizations are easier to learn than more complex generalizations (Cristia and Seidl
2008; Kuo 2009; Pycha et al. 2003; Saffran and Thiessen 2003). Others have focused on issues of
formal computational complexity and have shown that (adult) learners are able to learn patterns that
belong to only a subset of the patterns describable by finite-state automata, labeled the Subregular
classes (Lai 2015; McMullin 2016).

As mentioned at the outset, our interest in this article is determining what kind of bias, if any,
learners impose on data that is consistent with multiple phonotactic generalizations. However, none
of the experimental results that were very briefly reviewed above—i.e., neither the experimental
results showing that patterns mirror typological tendencies nor those showing that simpler gener-
alizations are learned better than more complex generalizations—directly address the question of
what learners learn in the face of ambiguity. Furthermore, while there are quite a few viewpoints
espoused for theoretical or logical reasons in the literature, there is far less experimental work on
the issue. We describe the few experimental studies that we are aware of that address this question

in more detail below, and then we discuss them again in the context of the different theoretical



viewpoints.

Gerken (2006) gave 9 month old infants training stimuli that consisted of syllables that had
the pattern AAB (or ABA), e.g., jidiji or jz'jidi.E Furthermore, in one training condition, the ‘B’
syllable was always the same syllable di (for example, leledi, wiwidi, jijidi, and dededi) and, in
a second training condition, the ‘B’ syllable varied between four different syllables di, je, li, we
consistent with the AAB (or ABA) pattern (for example, kokoba and popoga). The infants in their
experiments had significantly different looking times, compared to controls, for test stimuli that
consisted of AAB (or ABA) syllables with a different set of ‘B’ syllables, in response to the second
training condition but not in response to the first training condition (where all the training words
had the same “B” syllable, namely di). However, in a follow-up experiment, when the ‘B’ syllables
in the test stimuli were also di, then the infants had significantly different looking times even with
the first condition. In both experiments, in the first training condition, there were two competing
generalizations possible during training; one possible generalization is that all words are AAB (or
ABA) and the B is always di (the specific generalization), and a second possible generalization
is that all the words are AAB (or ABA) (the less specific generalization). Gerken interpreted the
results of their experiment as evidence in favor of infants forming the subset (or most specific)
generalization when the occasion allowed them to.

A second relevant study is that of Linzen and Gallagher (2014, 2017). The authors were inter-
ested in the time-course of generalization, but some of the results in their experiments are relevant
to generalizing when the data is consistent with multiple different generalizations. They had a to-
tal of four experiments, which are somewhat difficult to explain without an extended discussion;
however, we focus on aspects of their results that are crucial for current purposes. For example, in
their Experiment 1, they gave one group of participants training words that all started with a voiced
obstruent and another group training words that all started with a voiceless obstruent. In the testing

phase, they had three types of stimuli: stimuli whose initial consonants were the same as in the train-

2We use italics to represent the stimuli here, following Gerken (2006), as we are not sure if these are IPA symbols
or English orthography.



ing set (conforming—attested), stimuli whose initial consonants had the same voicing as the training
set but were not experienced during the training (conforming—unattested), and stimuli whose initial
consonants were inconsistent with the training data (nonconforming—unattested). Overall, across
the experiments, Linzen and Gallagher observed that, with sufficient training, participants accepted
conforming—attested more than conforming—unattested, which in turn were accepted more than
nonconforming—unattested, which means that they are able to learn generalizations but still have a
preference for items from the training set. They interpret their results as evidence that, with suffi-
cient exposure, participants learn not only featural (or class level) generalizations but also specific
segmental generalizations.

A third relevant study is Cristia et al. (2013)), who present some evidence from an ALL ex-
periment that participants do not learn a more complex generalization in the presence of simpler
generalizations. As with all ALL experiments, they had a training phase where participants were
(auditorily) presented non-words. The test phase stimuli combinations were more complicated than
what we present below, but we highlight the crucial aspects of their results. In the test phase, they
compared four types of stimuli: old onsets from the training phase (“exposure”), new onsets that
had the same phonological features as the narrowest class that described the training set (“within”),
new onsets that were one feature away from the narrowest class that described the training set
(“near”), and new onsets that were two features away from the narrowest class that described the
training set (“far”). Participants rated how frequently they thought the test stimuli had occurred
in the training phase. They observed that participants gave the highest frequency ratings to the
old onsets (“exposure”); the “within” and “near” received similar frequency ratings, and the “far”
received the lowest frequency ratings. Since there was generalization beyond the exposure set of
consonants to those outside the set, the results suggest the target grammar was not the subset gram-
mar (i.e., the more complex generalization in our terms). Similarly, the fact that the participants
gave similar frequency ratings to “within” and “near” is evidence that the subset generalization was
not learned.

Finally, another relevant set of studies are those that suggest local generalizations are privileged



(Finley 2011}, 2012; Lai 2015; McMullin 2016). For example, Finley (2011]) showed that learners
have a bias to learn patterns that are trans-vocalic (also called “first order local””). When pre-
sented with training stimuli that contain a version of sibilant harmony across a vowel (e.g., [pisasu],
[pifafu]), learners are not willing to extend the pattern to trans-segmental (also called “second-order
non-local”) occurrences (e.g., [sipasu], [fipafu]), but learners are willing to extend the pattern from
the latter stimuli to the former. This could be argued to show that learners have a bias for the more
specific (or complex) generalization, under the assumption that the trans-segmental non-local pat-
terns are simpler to represent than the transvocalic non-local patterns, as the latter patterns make
specific reference to ignoring only vowels while the former make no such fine-grained distinction.

Before discussing the different viewpoints about generalization (under ambiguity) and seeing
how the above results inform them, we think it is helpful to break down the question of how learners
generalize from data that is ambiguous between multiple different generalizations into two sub-

questions, ([I)).
1. How do learners learn from ambiguous data?

(a) Do learners learn just a single generalization that is consistent with a specific segmental

co-occurrence pattern, or do they learn multiple (even all) possible generalizations?

(b) Do learners learn the simplest generalization or the most specific (therefore, most com-

plex) generalization?

The questions might be easier to follow with a concrete example. Assume the exposure stim-
uli all have consonants that agree in both voicing and continuancy (e.g., [fisu], [pita], [badi],
...). There are multiple generalizations that are consistent with the input, including: a Voic-
ing harmony rule (which we will notate as ‘[« voice]’), a Continuancy harmony rule (which we
will notate as ‘[ cont]’), and a complex Voicing+Continuancy harmony rule (which we will no-
tate as ‘[« voice, [ cont]’). Note, [« voice] here stands for the featural sequence generalization

[ voice ... a voice], and [ 5 cont] stands for the featural sequence generalization [5 cont ... /3 cont];



i.e., both generalizations are over two (albeit, identical) features. Similarly, the conjoined gener-
alization [« voice,  cont] is a featural sequence generalization that involves four features, and
therefore counts as a more complex generalization. However, we will use to shorter descriptions
throughout to make the text more readable 3 The first question ([ld) asks if the learner learns just a
single one of the possible generalizations or if they learn more than one generalization consistent
with the data; and the second one ([1H) asks if the learner learns the more complex [« voice, (3 cont]
generalization (where the generalization is that both voicing harmony and continuancy harmony
have to be present in a stimulus for it to be acceptable), given the data is consistent with the simpler
independent generalizations [« voice], [ cont].

There are two important notes worth bearing in mind with regards to the terminology we use.
First, throughout, we follow Hayes and Wilson (2008) in employing the notions of simplicity and
specificity to individual rules/constraints instead of whole grammars. Second, we conflate the terms
‘most complex’ and ‘most specific’, and use them interchangeably. These are of course separate
notions, where the former refers to the intensional description, while the latter refers to the exten-
sion set. We maintain this conflation largely because it simplifies the discussion of the previous
literature. However, we return to this issue in Section [ and elaborate on how our results bear on
the distinction.

One response to the above questions is to suggest that learners learn just a single, simplest
generalization in response to ambiguous data (i.e., just [« voice] or [ 5 cont] in our example above).
In one of the earliest discussions on the topic, Chomsky and Halle (1968) and Halle (1961]) suggest
something similar to this. They suggest that the learner learns the simplest generalization that

is consistent with the data, where they define the ‘simplest’ generalization to be one that uses

3First, there are of course other possible generalizations in these stimuli, but we focus on these three. Foreshadowing
our experiments, we control for the possibility of other generalizations through the use of Disharmony stimuli. Second,
it is not clear if the representations [«, 5] count as separate representational primitives by themselves. This is because
[, B8] can be thought of as a stand in for the actual feature polarities themselves, which themselves might be unnecessary
in a privative feature system. Similarly, the conjunction ‘AND’ implicit in the description of the complex generalization
need not be an explicit element of the intensional description, as its use will depend on the format of the intensional
description. In what follows, we consider neither of them for the count of representational primitives, as we do not
think that the main argument is affected by their presence in such a count.



the fewest representational primitives (e.g., features, segments, etc.).@] We call this viewpoint the
Simplest Generalization viewpoint. Throughout this paper, echoing Chomsky and Halle (1968)
and Halle (1961), by ‘simplicity’ we refer to simplicity in terms of representational primitives.
Furthermore, we use the word ‘simplest’ to refer to one extreme on the scale of simplicity, and
we use the phrases ‘most complex’ to refer to the other extreme of the same scale. Therefore,
simplicity is based on the intensional description and not on the extensional sets that result from the
description. For example, a generalization that utilizes one feature is simpler than one that utilizes
more features; similarly, a generalization that invokes the representation of just a syllable is simpler
than one that invokes the representation of a syllable along with that of a segment simultaneously.

A second view that goes in the opposite direction of the Simplest Generalization view, in terms
of simplicity, is one where the learner keeps track of a single most specific generalization that is
consistent with the data (i.e., the complex generalization [« voice, 8 cont] in our example above).
This has been termed the Subset PrincipleE (Berwick 1985; Dell 1981). Notably, there is some
experimental evidence directly arguing for the Subset Principle in the face of ambiguous data. As
mentioned above, Gerken (2006) interpreted their results as evidence that infants formed the subset
(or most specific) generalization when the occasion allowed them to; however, Cristia et al. (2013)
argue against this viewpoint based on their results.

A third view that is very close in spirit to the Simplest Generalization idea is the viewpoint that
learners learn the simplest generalization, and, in case there is more than one such generalization
that can lay claim to being the ‘simplest’, the learner then keeps track of all such ‘simplest’ gen-
eralizations (i.e., the learner learns both the independent generalizations [« voice] and [ cont], in
our example above.). In fact, the Chomsky and Halle (1968) viewpoint discussed above could be
charitably extended along these lines, given that they assumed a single ‘simplest’ generalization in

their own discussion. This viewpoint has also been espoused by Hayes and Wilson (2008) in their

“4Both references explicitly talk about simplicity in the context of phonological features. However, nothing in their
discussion, as far as we can see, precludes an extension of the view to other phonological primitives.

SHowever, see Hale and Reiss (2003) for a view that argues that the Subset Principle is about lexical representa-
tions and not generalizations. Briefly, they suggest that the learner initially posits very specific (thus, richer) lexical
representations, and then moves to simpler (or less elaborate) lexical representations with growing experience.



attempt to develop a baseline Maximum Entropy phonotactic learner model. We call this viewpoint
the Multiple Simple(st) Generalizations viewpoint.

A fourth possible viewpoint is one that suggests that learners are also able to keep track of
all the generalizations consistent with the ambiguous data (i.e., the learner learns all the gener-
alizations [« voice], [ cont], and [« voice, § cont], in our example above). However, such
viewpoints differ in how they weight the most specific or simplest generalizations. One varia-
tion of this viewpoint aligns itself to the Simplest Generalization viewpoint, instead of the Subset
Principle; i.e., learners keep track of multiple (potentially, all) generalizations that are consistent
with the data but are biased to weight the simpler generalizations more highly than the more spe-
cific ones. We call this view the Proportional to Simplicity viewpoint. Although not direct, some
evidence for this position comes from the ALL experiments conducted by Linzen and Gallagher
(2014, 2017).B For their experiments, any increase in acceptability of the conforming—unattested
items over the nonconforming—unattested items can be regarded as due to the learning of a sim-
pler pattern involving the feature or natural class of voicing; however, any increase in acceptability
of the conforming—attested items over the nonconforming—unattested items could be due to both
the learning of a simpler featural generalization and/or a more specific/complex segmental gen-
eralizationl That is to say, if both the complex and the simple generalizations are learned, then
the acceptability of the conforming—attested could be an additive effect of the two generalizations.
Overall, across the experiments, they showed that, with sufficient training, participants accepted
conforming—attested more than conforming—unattested, which in turn were accepted more than
nonconforming—unattested, which means that they are able to learn generalizations but still have a
preference for items from the training set. Furthermore, looking carefully at the magnitudes of their
results from their Experiments 1 and 2, it seems that, for the largest exposure groups, the difference

between the conforming—unattested items compared to the nonconforming—unattested items was

6By stating that there is no direct evidence, we do not mean to criticize the results, as this is largely a function of
the authors having a different interest/focus than the current paper.

7Segmental generalization could be viewed as more complex if segments themselves are not viewed as represen-
tational primitives but instead as collections of feature bundles. If, in contrast, segments themselves are seen as repre-
sentational primitives along with features, then their results are consistent with the Multiple Simple(st) Generalizations
viewpoint laid out earlier. This is a point we will return to in our interpretation of our own Experiment 1.



larger than the difference between the conforming—attested items and the conforming—unattested
items. This thereby suggests that, for these groups of participants, the simpler (featural) general-
ization had a higher weighting than the more specific (segmental) generalization. The logic behind
this potential understanding of their results is further fleshed out below in the context of discussing
the predictions of the different viewpoints for our own experiments (see Figure ).

A second variation of the fourth viewpoint is instantiated in Bayesian models. In a probabilis-
tic formulation of the Subset Principle, it has been suggested that learning is proportional to the
specificity of the generalization; i.e., a generalization that is more specific is more highly valued
or weighted (Linzen and O’Donnell 2015; Tenenbaum and Griffiths 2001; Xu and Tenenbaum
2007).B Researchers who support such a viewpoint (typically) take a specific generalization to be
a generalization whose extension is a set of possible forms that is closest in size to that of the data
encountered through experience (in our case, the training data). We call this viewpoint the Propor-
tional to Specificity viewpoint. It needs to be pointed out that some of these claims are made in the
context of word-learning, and there is no clear experimental evidence supporting the model’s claim
for phonotactic sequence learning. Furthermore, while Linzen and O’Donnell (2015) set out to
explain the ALL results related to phonotactic patterns of Linzen and Gallagher (2014, 2017) using
their model, a crucial prediction of their model—namely, that the weight (or posterior probabil-
ity) associated with the simplest generalization will decrease with an increasing number of training
items—was not observed in Linzen and Gallagher’s (2014, 2017) experimental results. So, it is
unclear that the experimental evidence from Linzen and Gallagher (2014, 2017) can be interpreted
as clear evidence in favor of their model.

These different viewpoints are summarized in Table [I], by way of answering the two different
sub-questions laid out above in ([I]).

In this article, we present 3 ALL experiments that provide evidence for the Multiple Simple(st)

Swe acknowledge the point that Eberhardt and Danks (2011)) make that for a Bayesian model to be rational, the
model needs to use the generalization with the maximum a posteriori probability; i.e., the model will consistently use
the generalization with the highest associated weight. If this is implemented, then such models would make exactly
the same predictions as the Subset Principle. However, we follow, in our opinion, the intentions of the original papers
in assuming that the use of the generalizations is proportional to the (a posteriori) weight assigned to them.

10



Learn single or multiple Learn simple or most

generalizations? complex generalization? Viewpoint
Single Simplest Simplest Generalization
Single Most specific/complex Subset Principle
Multiple Simplest Multiple Szmgle(st)
Generalizations

Greater weighting for

Multiple simplest

Proportional to Simplicity

Greater weighting for most

Multiple specific/complex

Proportional to Specificity

Table 1: Different viewpoints on generalization in the face of ambiguity

Generalizations viewpoint, that learners do learn multiple generalizations in the face of ambigu-
ous data, but the generalizations they learn are only the simplest ones that are consistent with the
data; i.e., there is no evidence that learners learn the more complex/specific generalizations in the
presence of simpler possibilities. We flesh out more detailed predictions for each of the above
viewpoints for each of the experiments after presenting the details of the respective experiments
in the following sections. Briefly, in Experiment 1, we look at how participants learn from train-
ing words that are ambiguous between two simple featural generalizations ([« voice] or [ cont]),
and a more complex featural generalization ([« voice, 3 cont] satisfied simultaneously). While
the experiment presents clear evidence that learners learned the multiple simple generalizations,
the evidence for them learning the more complex generalization is confounded, as they could also
have simply kept track of a simple generalization over segmental representations. To overcome
this confound, in Experiments 2 and 3, we specifically tested participants on stimuli that could not
be accepted based simply on the segmental sequences in the training stimuli. The results of Ex-
periments 2 and 3 argue clearly that there is no evidence that the participants kept track of a more

complex featural generalization, when simpler generalizations were possible for the training data.
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2 Experiment 1

2.1 Methods
2.1.1 Participants

25 English-speaking undergraduates at Michigan State University participated in this experiment
for extra credit; however, 2 of the participants were excluded because they always responded ‘Yes’
to Disharmony and OldStims test items, making it difficult to ascertain whether the participant
learned anything at all. Thus, only the data from 23 participants is presented and analyzed in what

follows (Mean(Age)=19.9yrs, SD(Age)=1.5yrs; 18 Females & 5 Males).

2.1.2 Materials

In this experiment, participants were trained on a language that consisted of CVCV nonce words.
The possible vowels in the language were /a,i,u/, and the possible consonants were /p,b,t,d,f,v,s,z/.
All possible CVCV combinations of these vowels and consonants (8*3*8*3=576 items) were
recorded prior to running the experiment by a native speaker of American English from Michi-
gan. Having all possible stimuli allowed us to randomize the training and testing stimuli on a
participant-by-participant basis at the runtime of the experiment, which was predicated on the hope
that by randomizing we would control against any spurious/unintended generalizations in any sin-
gle stimulus set.

Overall, the experiment consisted of two phases: a training phase and a testing phase. The

experiment lasted about 10—15 minutes in total.

Training For the experiments in the paper, we specifically chose to focus on obstruent consonants
differing in voicing and continuancy because there are a large enough number of contrasts in English
to allow us to have a sufficient number of training and testing stimuli, without there being other
concomitant (phonological) featural changes. In the training phase of the experiment, participants

were given only CVCV nonce words where the consonants simultaneously agreed in both voicing

12



and continuancy. For example, [tipa] was a possible word in the languageg since [t] and [p] are both
voiceless and both non-continuants. Similarly, [fisa] was a possible word in the language since
[f] and [s] are both voiceless and both continuants. On the other hand, [tisa] was not a possible
word in the language since [t] and [s] disagree in continuancy; similarly, [fiza] was not a possible
word since [f] and [z] disagree in voicing. The input data was therefore consistent with at least
the three following rules: (i) a Voicing harmony rule, (ii) a Continuancy harmony rule, and (iii)
a simultaneous Voicing+Continuancy harmony rule. That is, the input data was consistent with
multiple generalizations, with different levels of complexity (see Figure [1, below).

The training phase consisted of exposure to 100 possible CVCV nonce words in the language.
The set of 100 words that a participant was exposed to during the training phase was chosen ran-
domly from the 144 words in the target language on a participant-by-participant basis using the
statistical software R (R Development Core Team 2014).

Each participant was exposed to their list of 100 words twice, in an order that was pseudoran-
domized by the experimental software, PsychoPy (Peirce et al. 2019), at the runtime of the experi-
ment. The pseudorandomization was constrained in such a way so that a complete pass through the
list of 100 words was completed before any repetitions were allowed. The words were presented
both orthographically and auditorily on an iMac desktop computer; the auditory presentation oc-
curred through headphones.

Participants were asked to silently mouth the words in order to ensure that they were paying
attention to the training items, which would in turn likely facilitate their learning of the language.
For a given training trial, participants saw a gray screen with small white writing near the top of the
screen that gave the instructions to “Silently mouth the following word”; the orthographic rendition
of the word was presented in a larger font in the center of the screen, and the auditory rendition

played over headphones. The training trials progressed automatically with an intertrial interval

9Henceforth, we will use the term ‘language’ to refer to the list of all possible words in the training phase; while
there were 576 possible CVCV combinations from the segments that we chose for our materials, only 144 of these were
such that the consonants agreed in both voicing and continuancy. Thus, when we say ‘language’ or ‘target language’
we are referring to these 144 words.

10 A5 the the training and testing stimuli lists used for each participant were generated using controlled random seeds,
they are fully replicable and the original source files are available upon request.

13



of 0.5 seconds. The orthographic rendition of the CVCV word was displayed for 1 second; the
duration of each trial was therefore equal to either the duration of the auditory presentation of the
word or the 1 second duration of the orthographic rendition, whichever was longer. The sound files
for the CVCV words were, on average, 0.73 seconds long. For all but 4 sound files, the duration of

each trial was 1 second. The remaining 4 sound files had a trial duration of at most 1.03 seconds.

Testing After the training, participants were given a randomized list containing 5 different types
of testing stimuli: (i) OldStims, (ii) NewStims, (iii) OnlyVoicing, (iv) OnlyContinuancy, and (v)
Disharmony. There were 12 items in each of these 5 categories so that there were 60 test items
overall. The participants were asked to determine whether the words they heard were possible
words in the language that they had learned in the training phase. The two possible responses
were ‘Yes’ and ‘No’. Like with the training stimuli, the testing stimuli were randomly chosen on a
participant-by-participant basis.

The OldStims were stimuli that had actually occurred in that participant’s training list. The
NewStims were stimuli that had not occurred in that participant’s training list but that did conform
to both the voicing harmony rule and the continuancy harmony rule. The OnlyVoicing stimuli had
consonants that only agreed in voicing (i.e., they disagreed in continuancy); an example of a possi-
ble OnlyVoicing stimulus would be [tisa]. The OnlyContinuancy stimuli had consonants that only
agreed in continuancy (i.e., they disagreed in voicing); an example of a possible OnlyContinuancy
stimulus would be [zifa]. Lastly, the Disharmony stimuli had consonants that disagreed in both

voicing and continuancy; an example of such a test stimulus would be [tiva].

2.2 Predictions

Given that the training data was consistent with both Voicing and Continuancy harmony, there were
three different generalizations that were consistent with the data: (a) Voicing harmony ([« voice]),
(b) Continuancy harmony ([ cont]), and (c) Voicing+Continuancy harmony ([« voice, 5 cont]);

this is depicted in Figure [I. Note that the third generalization is the most complex and most specific

14



generalization, while the first two are (equally) simple, where simplicity is defined in terms of

representational primitives used for the generalization.

Training stimuli: [tapi], [sifa], [sasi] ...

T

[ voice] (3 cont] [« voice, [ cont]

Figure 1: Possible generalizations for training stimuli

Since there are multiple generalizations consistent with the training data, the different view-
points presented earlier make different predictions about how the learners will generalize from the
data, as shown in Figure f. The figure represents the predicted proportion of “Yes’ responses (aver-
aged over multiple participants) for the different types of test stimuli as per the different viewpoints;
the horizontal dotted line represents the baseline proportion of ‘Yes’ responses for the Disharmony
stimuli. There is evidence of learning any of the relevant generalizations only if the proportion
of “Yes’ responses to any type of stimuli is above the horizontal dotted line. For example, the
OnlyVoicing and OnlyContinuancy stimuli would be above the dotted line only if the learner has
learned a Voicing harmony ([« voice]) and a Continuancy harmony ([5 cont]) rule, respectively.
The predictions related to the different viewpoints are elaborated further below.

The Subset Principle would suggest that the learners would only prefer the NewStims and
the OldStims compared to the Disharmony stimuli (Figure Pla), as these are the only stimuli that
are consistent with the more complex/specific generalization (namely, [« voice, 5 cont]). The
learners should not find the OnlyVoicing and OnlyContinuancy stimuli as more acceptable than
Disharmony, as neither of them are consistent with the most specific generalization.

The Simplest Generalization viewpoint predicts that some learners will generalize to Voicing
harmony ([« voice]), while others will generalize to Continuancy harmony ([ cont]), as depicted
in Figure Pb. Therefore, some learners should prefer OnlyVoicing stimuli and others OnlyContin-
uancy stimuli compared to the Disharmony stimuli. Furthermore, since NewStims are consistent
with either generalization, they should be as acceptable for any single speaker as either the On-

lyVoicing stimuli or the OnlyContinuancy stimuli. As a consequence, when averaged over mul-
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Figure 2: Predicted proportion of Yes’ responses (averaged over multiple participants) for the test

stimuli under different viewpoints (SP = Subset Principle; SG = Simplest Generalization; MSG =

Multiple Simple(st) Generalizations; PropSpec = Proportional to Specificity; PropSimple = Propor-

tional to Simplicity; Dashed line = baseline proportion of ‘Yes’ responses to Disharmony stimuli).
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tiple speakers, the acceptance of NewStims will look as if the acceptance arises from an additive
effect of learning both Voicing and Continuancy harmony separately. However, crucially, there is
a prediction that there should be a negative correlation between learning Voicing and Continuancy
harmony; i.e., as the acceptance for OnlyVoicing stimuli increases, the acceptance for OnlyCon-
tinuancy stimuli should decrease, since any given participant should have only learned one of the
simple generalizations, not both.

The Multiple Simple(st) Generalizations viewpoint predicts that learners learn both Voicing
harmony ([ voice]) and Continuancy harmony ([ cont]) as separate generalizations (Figure Pc).
Therefore, both the OnlyVoicing stimuli and the OnlyContinuancy stimuli should be preferred over
the Disharmony stimuli. As a consequence, there is a predicted additive effect on the NewStims,
which are consistent with both Voicing harmony and Continuancy harmony (i.e., NewStims ~ On-
lyVoicing + (OnlyContinuancy — Disharmony)). Furthermore, based on the assumption that greater
learning of each generalization is driven by greater overall learning (due to performance factors
such as more attention to the task, more aptitude for the task, ...), there should be a positive corre-
lation between learning Voicing and Continuancy harmonys; i.e., as the acceptance for OnlyVoicing
over Disharmony stimuli increases, the acceptance for OnlyContinuancy over Disharmony stimuli
should also increase.

The Proportional to Simplicity viewpoint predicts that learners learn all three generalizations
(namely, [« voice], [ 3 cont], and [« voice, [ cont]), but the importance given to each of the general-
izations is expected to be directly proportional to their simplicity (Figure fd); therefore, the simpler
generalizations (i.e., [« voice] and [ 3 cont]) should be learned better than the more specific general-
ization ([« voice, [ cont]). As a consequence, learners will prefer the OnlyVoicing stimuli and the
OnlyContinuancy stimuli over the Disharmony stimuli. Furthermore, since the NewStims are in
the extension of all three generalizations, the preference for NewStims should be more than just an
additive effect of the preference for the OnlyVoicing stimuli and the OnlyContinuancy stimuli over
the Disharmony stimuli; i.e., a super-additive (or interactive) effect is predicted for the NewStims

compared to the OnlyVoicing stimuli and the OnlyContinuancy stimuli. Finally, since the weight
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associated with the more specific generalization is not as large as those with the simpler generaliza-
tions, the contribution of the more specific generalization to the acceptability of the NewStims will
also be consequently smaller than the contributions of the simpler generalizations (i.e., [« voice],
or [ cont]). Therefore, an interactive or super-additive effect observed for the NewStims over the
OnlyVoicing stimuli and the OnlyContinuancy stimuli should be smaller than the preference for
the OnlyVoicing stimuli and the OnlyContinuancy stimuli, when compared to Disharmony (i.e.,
NewStims & (OnlyVoicing + (OnlyContinuancy — Disharmony) + X), where X < (OnlyVoicing
— Disharmony) and X < (OnlyContinuancy — Disharmony)).

Finally, the Proportional to Specificity viewpoint makes similar predictions to the Proportional
to Simplicity viewpoint, as it too predicts that all three generalizations will be learned (Figure Ple).
However, the one difference is in the importance of the weight given to each of the generaliza-
tions. Where the Proportional to Simplicity viewpoint is biased towards simpler generalizations,
the Proportional to Specificity viewpoint is biased towards more complex/specific generalizations.
So, like the Proportional to Simplicity viewpoint, the Proportional to Specificity viewpoint predicts
that the preference for NewStims should be more than just an additive effect of the preference for
the OnlyVoicing stimuli and the OnlyContinuancy stimuli over the Disharmony stimuli (i.e., again
a super-additive, or interactive, effect is predicted). However, since the most complex generaliza-
tion is weighted more than the simpler generalizations, the interactive effect observed should be
larger than the preference for either the OnlyVoicing stimuli or the OnlyContinuancy stimuli, when
compared to Disharmony (i.e., NewStims ~ (OnlyVoicing + (OnlyContinuancy — Disharmony) +

X), where X > (OnlyVoicing — Disharmony) and X > (OnlyContinuancy — Disharmony)).

2.3 Results

A visual inspection of the mean proportion of ‘Yes’ responses suggests that all four types of test
stimuli (OnlyVoicing, OnlyContinuancy, NewStims, and OldStims) are more acceptable to partic-
ipants than the Disharmony stimuli (Figure [§}). Furthermore, the proportion of “Yes’ responses for

the NewStims appears to be more than just an additive effect of OnlyVoicing and OnlyContinuancy
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Figure 3: Proportion of “Yes’ responses to test stimuli in Experiment 1 (error bars represent standard
errors; OnlyCont = OnlyContinuancy).

In order to confirm the observations made by visual inspection of the results, we conducted
a statistical analysis. In this article, wherever possible, participant responses were analyzed using
mixed-effects logistic regression models in the statistical software package R (R Development Core
Team 2014). The models were fitted using the glmer function available through the 1me4 package
(Bates et al. 2015). We attempted to obtain the maximal random effects structure that was possible
(Barr et al. 2013). However, as is typical in psycholinguistic data (and in our own experience), the
models with the most complex random eftfects structures did not converge. It is important to note
that the field and the statistical literature in general have not come to a consensus on how to best
proceed in identifying the best random effects structure, especially when a model with a particular
random effects structure does not converge (Bolker 2014). In what follows, we describe the random
effects structure selection process that we used for our experiments by following other experienced

linear mixed-effects modelers in psycholinguistics (Barr et al. 2013; Jaeger 2009, 2011)).

We identified the appropriate random effects structure by keeping the fixed effects constant;
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we used the full fixed effects model for the experiment (i.e., with interactions for all the fixed
effects, if relevant). We started with the most complex random effects structure. In the case of
non-convergence of the complex random effects model, we systematically pared down the random
effects structure till convergence was reached. The least complex random effects structure we
entertained was one with a varying intercept for both subjects and items. When convergence was
reached, the corresponding random effects model was identified to be the maximal random effects
structure possible for the data. We then performed model comparison (using the maximal random
effects structure possible for the data that we identified in the manner just detailed) in order to
identify the best combination of fixed effects; specifically, we compared models through backwards
elimination of non-significant terms, beginning with the interactions, through a Chi-squared test of
the log likelihood ratios. The most complex fixed effects model entertained was the full model with
all interaction terms, and the least complex model entertained was the model with only an intercept
term and no fixed effects.

Using the above procedure, we attempted to fit logistic mixed-effects models for all the re-
sponses in Experiment 1, where the dependent variable was a binary variable that codes for whether
participants responded with a “Yes’ or not. To find out if the responses to the NewStims were more
than an additive effect of the OnlyVoicing and OnlyContinuancy responses (i.e., a super-additive
effect), we coded the OnlyVoicing stimuli as Voicing, the OnlyContinuancy stimuli as Continuancy,
the NewStims as both Voicing and Continuancy, and the Disharmony stimuli as neither Voicing nor
Continuancy. The random effects structure included a varying intercept for subjects and items.
The best model was one with an interaction effect (Table ). This suggests that the responses to the
NewStims cannot be modeled as simply an additive effect of the responses to the OnlyVoicing and
OnlyContinuancy stimuli; crucially, the interaction effect is larger than either of the main effects.

We include the comparison between the above model and a model without an interaction term.
As can be seen in Table fJ, on the basis of the Chi-squared test and the AIC/BIC, the model with

the interaction term is the better model.

'Note, lower AIC/BIC values are better.
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Fixed Effect Estimate zvalue Pr(> z)

(Intercept) -0.1231 -0.544  0.2934
Voicing 0.4758  2.513  0.0059  **
Continuancy 0.7574  3.920 <0.0001 ***

Voicing:Continuancy  0.8881 3.032  0.0012  **

Table 2: Best fitting logistic mixed-effects model for Experiment 1

Model AIC BIC ChiSq Pr(> 2

Without interaction term 1293 1318
With interaction term 1285.7 1315.7 9.3 0.002

Table 3: Model comparison with a model without an interaction term

2.4 Discussion

The results of Experiment 1 suggest that participants are able to learn the simpler generalizations
even when a more complex generalization is consistent with the training data. This must be true
as the OnlyVoicing and the OnlyContinuancy stimuli were both rated higher than the Disharmony
stimuli during training, which would not be predicted if participants had only learned the more
complex generalization (i.e., [« voice, [ cont]). Therefore, the viewpoint that suggests that the
learner would learn only the most complex/specific generalization (i.e., the Subset Principle) is
inconsistent with the results.

Furthermore, the results also suggest that the ‘Yes’ responses to the NewStims cannot be mod-
eled simply as an additive effect of the two simpler generalizations (i.e., [« voice] and [ cont]).
Therefore, the results can be reasonably interpreted as support for the viewpoints that claim that
learners keep track of all the possible generalizations; i.e., it can be seen as support for the Propor-
tional to Simplicity and Proportional to Specificity viewpoints.

However, it is possible that learners keep track of segment (consonant) sequence generaliza-
tions along with featural generalizations; i.e., segments, like features, are representational prim-
itives. Note, such a view is independently needed to account for phonological patterns such as
segmental metathesis, segment epenthesis, and segment deletion (also see Kazanina et al. (2017)

and Albright (2009) for a similar claim that segment-sized representational primitives are needed.)
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Furthermore, if consonant sequence generalizations are considered to be as simple as featural gen-
eralizations by learners (provided they involve the same number of primitives), then the Multiple
Simple(st) Generalizations viewpoint would say that learners should be able to keep track of con-
sonantal sequences, separately from their featural content. In such a case, saying [p...t] would
be simpler than a conjoined featural generalization [« voice, 8 cont], because “simplicity” in this
paper refers to the intensional description, and it is established by counting the number of repre-
sentations (features, segments, efc.) in the generalization. As a consequence, since the responses to
the NewStims would then be an additive effect of the Voicing harmony, Continuancy harmony, and
the consonant sequence generalizations learned during training, even the Multiple Simple(st) Gen-
eralizations view would say that the responses to the NewStims would be more than an additive
effect of just the responses to the OnlyVoicing and OnlyContinuancy stimuli. Given this poten-
tial confound from the possibility that segments themselves can independently be representational
primitives, the evidence for the learning of the more complex featural generalization is not clear
from Experiment 1.

Given that there is no clear evidence that the learners learned the complex (conjoined) con-
straint, we cannot adjudicate between the Proportional to Specificity and Proportional to Simplic-
ity viewpoints directly. Adjudicating between these two viewpoints would be more appropriate to
do in the case of Experiments 2 and 3, where the segmental generalization confound isn’t present.
However, foreshadowing the results, in these experiments, there is no evidence that participants
learned a more complex featural generalization (i.e., [ voice, S cont]). Thus, adjudicating be-
tween the Proportional to Specificity and Proportional to Simplicity becomes unnecessary, as both
viewpoints predict that participants should learn the more complex generalization, contrary to what
we find in our subsequent results.

The main findings in Experiment 1 are that speakers are able to keep track of the simple featu-
ral generalizations ([« voice] and [ cont]) as evidenced by the fact that they accept OnlyVoicing
and OnlyContinuancy stimuli during the test phase. What there is no clear evidence for is if they

are learning the more complex (conjoined) featural generalization ([« voice, 3 cont]), because the
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interaction result observed with NewStims could also be explained if speakers use segments them-
selves as representational primitives to form generalizations. In Experiments 2 and 3, we focus
specifically on avoiding the above confound, to see if there is any evidence of participants learn-
ing complex (conjoined) featural generalization, and we show that the interactive effect found in
Experiment 1 for the NewStims disappears when the possibility of using a segmental generaliza-
tion is removed. This suggests that learners are not learning the more complex (conjoined) featural

generalization, when the simpler featural generalizations are present.

3 Experiment 2

In Experiment 1, learners’ responses to the NewStims appeared to be more than an additive effect
of their responses to the OnlyVoicing and OnlyContinuancy stimuli. However, the NewStims con-
tained consonant sequences that may have been heard during training, so the super-additivity could
simply be a result of the learners keeping track of consonant sequence generalizations alongside
simple featural generalizations. To control for this possibility, in Experiment 2, we withheld cer-
tain pairs of consonants during training and created NewStims during testing using those withheld
consonant sequences (as described below in Section B.1.2). As a consequence, the responses to
NewStims can no longer be influenced by any consonant sequence generalizations. Therefore, if
the responses to the NewStims are still super-additive over the responses to OnlyVoicing and On-
lyContinuancy, that would constitute evidence that, in the face of ambiguous data, the learners are
able to keep track of not only the simpler featural generalizations ([« voice] and [3 cont]), but also

the more complex featural generalization ([« voice, [ cont]).

3.1 Methods

3.1.1 Participants

78 English-speaking undergraduates at Michigan State University participated in this experiment

for extra credit. We ran many more participants in Experiment 2 to ensure that any lack of a
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super-additive effect observed was not due to a lack of power, as discussed further in Section B.3.
The decision to run at least 50 participants was made before, and was not based on data peeking.
This was to make sure that there was sufficient statistical power. However, since the experimental
participants were recruited through extra credit, we ended up having 78 participants.

Out of the original 78 participants, 15 of the participants were excluded due to non-learning
(i.e., they always responded ‘Yes’ to the Disharmony and OldStims test items). Thus, only the data
of 63 participants is presented and analyzed in what follows (Mean(Age)=20yrs, SD(Age)=3yrs;
46 Females & 17 Males).

3.1.2 Materials

The design of Experiment 2 was nearly identical to that of Experiment 1. The possible vowels and
consonants were the same, and the experiment also took about 10—15 minutes overall. The only

minor differences between Experiment 1 and Experiment 2 are discussed immediately below.

Training The only difference between Experiment 1 and Experiment 2 in the training phase was
that we withheld certain consonant sequences in the training phase of Experiment 2. As men-
tioned before, this was done to address a possible confound in Experiment 1 where participants
may have been keeping track of consonantal sequences. The consonant pairs we withheld were
randomized on a participant-by-participant basis. For example, one participant would have never
received [tVpV] or [pVtV] in their training input while another participant would have never re-
ceived [fVsV] or [sVIV]. These participants would have never heard these consonant pairs, but
they would have nonetheless still heard these consonants in other contexts in their training. For
example, while the first participant would never have heard words of the form [tVpV], this partici-
pant would have heard words of the form [tVtV] and [pVpV]. We allowed for the possibility of the
learners hearing identical consonant sequences consisting of each of the consonants in the withheld
consonant sequences to make sure that learners did not choose a ‘No’ response to the withheld

consonant sequences in testing purely because the consonants themselves were novel to them.
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Other than this constraint on the possible training stimuli, the training procedure for Experiment

2, including the presentation of the training stimuli, was exactly the same as in Experiment 1.

Testing Like with the training, the testing phase in Experiment 2 was nearly identical to the testing
phase in Experiment 1. There were the same 5 different types of testing stimuli, consisting of 12
items each for a total of 60 test items. The only difference was that the NewStims during the test
phase of Experiment 2 consisted of words that used the consonant pairs withheld during training.
In other words, the NewStims in Experiment 1 were novel words, but they contained conso-
nant sequences that a participant might have previously heard. For example, if a NewStims test
stimulus in Experiment 1 was [fasi], the participant never would have heard [fasi] in training, but
the participant might have heard [fisu] in training. This is no longer the case in Experiment 2.
In Experiment 2, the NewStims test stimuli were novel words that had novel consonant pairings

(because the consonant pairings were withheld during training, as discussed immediately above).

3.2 Predictions

Since the current experiment controls for the possibility of participants using segmental general-
ization for the test stimuli, the predictions of all the viewpoints presented earlier are the same as

discussed in Section 2.2 (see Figure ).

3.3 Results

A visual inspection of the mean proportion of ‘Yes’ responses suggests, as in Experiment 1, that
all four types of test stimuli (OnlyVoicing, OnlyContinuancy, NewStims, and OldStims) are more
acceptable to participants than the Disharmony (Figure ). Moreover, two further observations
can be made. First, the proportion of ‘Yes’ responses for NewStims seems much lower than in
Experiment 1. Second, unlike in Experiment 1, the ‘Yes’ responses for the NewStims appear to be
no more than an additive effect of the responses to the OnlyVoicing and OnlyContinuancy stimuli,

over and above the Disharmony stimuli.
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Figure 4: Proportion of “Yes’ responses to test stimuli in Experiment 2 (error bars represent standard
errors; OnlyCont = OnlyContinuancy).

As in Experiment 1, to find out if the responses to the NewStims were more than an additive
effect of the OnlyVoicing and OnlyContinuancy responses (i.e., a super-additive effect), we coded
the OnlyVoicing stimuli as Voicing, the OnlyContinuancy stimuli as Continuancy, the NewStims
as both Joicing and Continuancy, and the Disharmony stimuli as neither Voicing nor Continuancy.
And again, we attempted to fit a mixed-effects logistic regression model (following the procedure
discussed in Section P.3)). The random effects structure, as in Experiment 1, included a varying
intercept for subjects and items. The best model was one with two simple main effects (Table H).
The results of the modeling suggest that the responses to the NewStims can in fact be modeled as
simply an additive effect of the responses to the OnlyVoicing and OnlyContinuancy stimuli. This
is consistent with what can be observed visually in Figure #. Given that the best model was one
with two simple main effects, there appears to be no evidence of a super-additive effect for the
NewStims.2

In order to better understand if the lack of an interaction effect (Figure U, Table {) is either due

12The model with the interaction term for Voicing and Continuancy was not significantly better than the best model.
Furthermore, the interaction term was not significant in that model (8 = 0.015, p = 0.93).
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Fixed Effect Estimate z-value Pr(> z)

(Intercept) 0.1625 1.279 =0.2
Voicing 0.1829 1941  =0.05 *
Continuancy  0.4031  4.272  <0.001 ***

Table 4: Best fitting logistic mixed-effects model for Experiment 2

to the atypical responses of just a few participants or perhaps due to a lack of sufficient statistical
power in our experiment, we further plotted the cumulative proportions of ‘Yes’ responses to each
Type of test stimulus with increasing number of participants (Figure ). The plot suggests that the
relative differences in the cumulative effect sizes stabilize after about 25-30 participants, thereby
suggesting the non-interactivity is not due to a lack of power in Experiment 2. The plot also includes
the putative additive effect of OnlyVoicing and OnlyContinuancy (VoicePlusCont = OnlyVoicing
+ (OnlyContinuancy — Disharmony)). As can be observed, the VoicePlusCont line almost perfectly
coincides with the NewStims responses after about 25-30 participants, thereby providing further
evidence that the responses to NewStims are indeed no more than an additive effect of the responses
to the OnlyVoicing and OnlyContinuancy stimuli.

Finally, we also wanted to take a closer look at the data to see if participants were indeed learning
both simple generalizations (i.e., [ voice] and [ cont]). It is possible to read the data presented
so far for Experiments 1 & 2 as consistent with some participants learning Voicing harmony, and
some others learning Continuancy harmony. That is, since we presented only the overall mean
proportion of responses, it is not clear if each participant was learning both simple generalizations.
Therefore, to confirm that the participants were really learning both simple generalizations, we
looked at the proportion of ‘Yes’ responses to OnlyContinuancy stimuli and the proportion of ‘Yes’
responses to OnlyVoicing. Note, we could not make a similar comparison in Experiment 1, as 23
data points (one corresponding to each participant) are usually seen as insufficient to fit a simple
linear regression model (Field 2013). If each participant was really learning just one simple

generalization (at the cost of the other), then there should be a trade-off in their responses to the

3Though we did not include the relevant plot, the reader might be interested in knowing that there was also a
significant positive correlation for the same comparison in Experiment 1 (8 = 0.361, p = 0.03).
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Figure 5: Cumulative proportions of ‘Yes’ responses to test stimuli with increasing number of
participants in Experiment 2 (ribbons represent 95% confidence intervals; OnlyCont = OnlyCon-
tinuancy).

OnlyVoicing and OnlyContinuancy stimuli (i.e., there should be a negative correlation between the
two responses). On the other hand, if each learner is learning both generalizations, there should be
a positive correlation between the responses to the OnlyVoicing and OnlyContinuancy stimuli. In
Figure [, we indeed see a positive correlation (B = 0.469, p < 0.00001). This suggests that if a
learner thought that the OnlyVoicing stimuli were more like the training data, they were also likely

to think that the OnlyContinuancy stimuli were more like the training data.

3.3.1 Is there any evidence that the complex generalization was learned?

The logistic regression models that we’ve presented cannot directly test if a model without an
interaction effect is supported by the datal4 The issue is the following: it is possible for the

learners to learn a more complex generalization, along with the simpler generalizations, and for

14Thanks to the Associate Editor for highlighting this issue to us and for providing a way forward by suggesting the
Monte Carlo simulations we present here.
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the interaction term in the logistic regression to still be non-significant. The fundamental problem
is the indirect relationship between interaction terms in logistic regression and super-additive raw
probability.

Since the original logistic regression analyses don’t quite address the issue we are interested
in probing, we did a Monte Carlo simulation. In order to do Monte Carlo simulations, one has
to be explicit about the underlying probability models, and about how learners would employ the
multiple generalizations that they have learned. There are at least two ways in which one could
flesh out the underlying probability models (see Supplementary Materials [A] for an annotated R

script for explicit statements of the models and related simulations):

(a) Model A: the learner uses all the generalizations simultaneously while making an acceptabil-
ity judgment. This can be cashed out as a probability that is the product of the probabilities

associated with each of the generalizations.

(b) Model B: despite knowing multiple generalizations, the learner uses only one generalization
at any one time with equal probability of picking any of the generalizations, while making
an acceptability judgment; i.e., the generalizations are used individually and mutually exclu-
sively while making an acceptability judgement. This can be cashed out as the average of the

probabilities associated with each of the generalizations.

In our opinion, both of these are reasonable probability models, and it is not possible to decide
a priori which is the more appropriate model. For this reason, we present the results of the Monte
Carlo simulations with each underlying probability model.

The steps we used for the Monte Carlo simulation are as follows:

Step 1: Sketch out a model of the predicted probability of acceptance, with and without the com-
plex generalization. (We ran simulations for both of the probability models fleshed out

above, (a) and (b)).

Step 2: Fit underlying probabilities to the observed data, without allowing for any complex gener-

alization. This is the null hypothesis.
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Step 3: Use the Monte Carlo approach to generate the experimental data for each experiment 1,000
timesld (replicating the combinatorics of the experiments) from these underlying probabil-
ities and fit a logistic regression model (with interaction) to each iteration. This gives the
distribution of interaction coefficients expected under the null hypothesis of no complex

generalization.

Step 4: Fit a logistic regression model (with interaction) to the observed data. This gives the ac-

tual/observed interaction coefficient.

Step 5: Is the interaction coefficient for the actual data further away from the mean of the inter-
action coefficients obtained from the simulation than 95% of the interaction coefficients

obtained from the simulation?

In Table [, we present the results based on two sets of 1,000 simulations of the null models for
Experiment 2 (simulations were repeated to ensure reliability). We present the proportion of inter-
action coefficients for data simulated from the null model that were further away from the mean of
the interaction coefficients than the actual interaction coefficient observed in the experiments. This
is essentially a p-value with the simulations giving us the sampling distribution of the interaction
coefficients, and a higher proportion means the interaction is closer to the mean of the interaction
coefficients under the null model. Effectively, we have run a two-tailed test. We believe this is
more appropriate, as the interaction coefficient could have been both more than or less than the
mean of the interaction coefficients for the simulated data from the null model.

As can be seen from the results, there is simply no evidence of a more complex generalization
being learned. The model with only the simple generalizations captures the data almost perfectly;
this is so, because the interaction effect for the actual data is very close to the mean of the interaction

coefficients for the simulated data from the null models.

I3This seemed sufficient given the nature of the results presented below. In one case for Experiment 3, we went all
the way to 10,000 times as discussed below.
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Probability Model 15t 1000 simulations 2" 1000 simulations

All generalizations evaluated together 0.831 0.796
One generalization evaluated at a time 0.966 0.945

Table 5: Proportion of interaction coefficients for data simulated from the null models that were
further away from the mean of the interaction coefficients than the actual interaction observed in
Experiment 2.

3.4 Discussion

In Experiment 1, there was a possible confound that learners were also keeping track of consonant
sequence generalizations, which might have aftected their responses to the NewStims. If segments
themselves are representational primitives, then the super-additive effect observed for the New-
Stims in Experiment 1 could have been accounted for by multiple viewpoints. In Experiment 2,
once the segment sequence confound was removed from the NewStims test stimuli by withholding
the relevant consonant sequences during training, the proportion of ‘Yes’ responses to the New-
Stims was no more than an additive effect of the same for the OnlyVoicing and OnlyContinuancy
stimuli (see Figure § and Table H); that is, there was no super-additive effect. This suggests that
learners do not keep track of more complex featural generalizations when simpler generalizations
are available. Furthermore, a closer look at the cumulative proportion of ‘Yes’ responses for each
type of test stimulus (Figure [§) revealed that the lack of a super-additive effect for the NewStims
could not be due to insufficient statistical power; i.e., this is not due to an insufficient number of
participants in our experiment. Finally, the results also clearly establish that learners were indeed
learning both simple generalizations, since the higher the ‘Yes’ responses to OnlyVoicing over
Disharmony, the higher the responses to OnlyContinuancy over Disharmony (Figure §).

There are three aspects of the data that deserve further consideration. First, the proportion of
‘Yes’ responses to OnlyVoicing over Disharmony, while consistent in direction with the results in
Experiment 1, was just barely statistically significant. Second, the responses to the NewStims in
Experiments 1 & 2, while visually different, were not directly comparable due to huge imbalances

in the number of participants and differences in the types of training and test stimuli. Finally, given
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that there can be subtle effects of the training data on potential generalizations, as discussed in
Gerken and Knight (2015), it is important to establish that the results are not due to accidental
patterns in the (randomized) training stimuli. We ran Experiment 3, which is in part a replication

of Experiment 2, to address these concerns.

4 Experiment 3

4.1 Methods
4.1.1 Participants

51 English-speaking undergraduates at Michigan State University participated in this experiment
for extra credit (Mean(Age)=20.1yrs, SD(Age)=3.6yrs; 39 Females & 12 Males). None of the

participants were excluded due to non-learning.

4.1.2 Materials

The design of the Experiment 3 was nearly identical to those of Experiments 1 & 2. Again, the
possible vowels and consonants were the same, and the experiment also took about 10—15 min-
utes overall. The minor differences between Experiment 3 and Experiments 1 & 2 are discussed

immediately below.

Training The training phase for Experiment 3 was identical to that of Experiment 2. As in Ex-
periment 2, we withheld certain consonant sequences in the training phase of Experiment 3. The

training stimuli were presented in the exact same manner as in Experiments 1 and 2.

161t is interesting to note that, unlike in Experiments 1 & 2, none of the participants hit ceiling for both the Dishar-
mony and OldStims test items. It is unclear what caused this change in participant results. Since all instructions were
the same and were provided through the experimental software, we are unaware of any systematic changes in pre-
experiment instructions given to the participants. It is possible that the emphasis to some of the participants by one of
the authors to focus on the training might have had an effect; however, it is not obvious how that has a bearing on the
results.
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Testing The testing phase in Experiment 3 was nearly identical to the testing phase in Experiment
2. However, there were 6 different types of testing stimuli (instead of 5), consisting of 10 items
each for a total of 60 test items.

As in Experiments 1 & 2, the test items consisted of Disharmony, OnlyVoicing, OnlyContin-
uancy, and OldStims stimuli. Along with those 4 types, there were two other types of NewStims,
corresponding to the NewStims of Experiments 1 & 2. Those new stimuli that consist of consonant
sequences observed during training, as in Experiment 1, are labeled NewWordStims. To reiterate,
these are novel stimuli because the vowels are different. For example, a participant might have
heard [fusi] during training but not [fisa]; [fisa] could have therefore been a NewWordStim for this
participant in the test phase. So while the consonant sequence is not new, the word itself is new to
the participant. Furthermore, we did still withhold random consonant sequences from participants
on an individual basis in the training phase, just like in Experiment 2. The withheld consonant
sequences were used for what we call the NewConsStims testing stimuli. For example, if a par-
ticipant never heard [bVdV] and [dVbV] during training, then any words of this form could have

made up the NewConsStims for this participant in the testing phase.

4.2 Predictions

Since the experiment was done to (a) confirm the findings of the previous two experiments; (b)
allow for a more direct comparison of the ‘Yes’ responses to the two types of NewStims in Ex-
periments 1 & 2; and (c) to ensure that the effect observed for OnlyVoicing stimuli in Experiment
2 was replicable, the predictions of all the viewpoints presented earlier are effectively the same
as discussed in Sections (see Figure fl). We furthermore predict NewWordStims to be rated
more highly than NewConsStims, because NewWordStims also conform to any segment-based
generalizations a learner might have formed during training (in addition to the feature-based gen-

eralizations), whereas the NewConsStims do not.
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4.3 Results

A visual inspection of the mean “Yes’ responses suggests that the five types of test stimuli of main
interest (OnlyVoicing, OnlyContinuancy, NewConsStims, New WordStims and OldStims) are more
acceptable to participants than the Disharmony stimuli (Figure [). Three further observations can
be made. First, the OnlyVoicing stimuli are clearly more acceptable than Disharmony stimuli,
thereby suggesting that the marginally significant results in Experiment 2 were not due to chance
variation. Second, as in Experiment 1, the “Yes’ responses for the NewWordStims appear to be the
result of a super-additive effect of the ‘Yes’ responses to the OnlyVoicing and OnlyContinuancy
stimuli, over and above the Disharmony stimuli. Finally, as in Experiment 2, the ‘Yes’ responses
for the NewConsStims appear to be just an additive effect (if anything, sub-additive effect) of the

‘Yes’ responses to the OnlyVoicing and OnlyContinuancy stimuli, over and above the Disharmony

0.8-
0.6-
0-4- ﬁ -

Disharmony OnlyVoicing OnlyCont NewCStims NewWStims OldStims
TYPE

stimuli.

Proportion of "Yes' responses

Figure 7: Proportion of “Yes’ responses to test stimuli in Experiment 3 (error bars represent standard
errors; OnlyCont = OnlyContinuancy; NewCStims = NewConsStims; New W Stims = New Word-
Stims).

As in Experiments 1 & 2, to find out if the responses to the NewConsStims were more than

35



an additive effect of the OnlyVoicing and OnlyContinuancy responses (over and above the Dishar-
mony stimuli), we coded the OnlyVoicing stimuli as Voicing, the OnlyContinuancy stimuli as Con-
tinuancy, the NewConsStims as both Voicing and Continuancy, and the Disharmony stimuli as
neither Voicing nor Continuancy. And again, we attempted to fit a mixed-effects logistic regres-
sion model (following the procedure discussed in Section 2.3). The random effects structure, as
in Experiments 1 & 2, included a varying intercept for subjects and items. As with the results of
Experiment 2, the best model was one with two simple main effects (Table E). Therefore, the

results of Experiment 3 replicate those of Experiment 2.

Fixed Effect Estimate zvalue Pr(> 2)

(Intercept) -0.0689 -0.538 =0.295
Voicing 0.3022 2948 <0.01  **
Continuancy  0.3737  3.646  <0.001 ***

Table 6: Best fitting logistic mixed-effects model for Experiment 3

Next, to compare if the proportion of ‘Yes’ responses to NewWordStims was higher than that
for NewConsStims, we fit a logistic mixed-effects model with the data subsetted to only those two
types of test stimuli, and the responses to NewConsStims as the baseline. Therefore, the indepen-
dent variable of Type has only two levels (NewConsStims, NewWordStims). The random effects
structure was one with a varying intercept for both subjects and items. The model with the inde-
pendent factor for Type was the best model for the above random effects structure (Table [7). The
model clearly supports the earlier visual inspection in suggesting that there was indeed a higher

proportion of ‘Yes’ responses to NewWordStims compared to NewConsStims.

Fixed Effect Estimate z-value Pr(> 2)

(Intercept) 0.5300  3.523  <0.001  #**
NewWordStims  1.2169  7.335  <0.0001 ***

Table 7: Logistic mixed-effects model comparing NewConsStims and New WordStims

Finally, as with Experiment 2, we also wanted to take a closer look at the data to see if partici-

7The model with the interaction term for Voicing and Continuancy was not significantly better than the best model.
Furthermore, the interaction term was not significant in that model (8 = —0.29, p = 0.16).
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pants were indeed learning both simple generalizations (i.e., [« voice] and [ 5 cont]). As can be seen
in Figure §, replicating the results of Experiment 2, there is a positive correlation between the prefer-
ence for OnlyContinuancy and the preference for OnlyVoicing (3 = 0.372, p = 0.001). Therefore,
there is again no tradeoff between learning the two generalizations for the learners. This suggests,
in line with Experiment 2, that learners who learned Voicing harmony also learned Continuancy
harmony, thereby clearly showing that participants are able to learn both simple generalizations

simultaneously.

(8=0.372, p=0.001|

0.75 -

0.50 -

0.25-

Proportion of “Yes' Responses to OnlyContinuancy

0.25 0.50 0.75 1.00
Proportion of "Yes' Responses to OnlyVoicing

Figure 8: Correlation between increase in ‘Yes’ responses in Experiment 3 to OnlyVoicing and
OnlyContinuancy (note: jitter has been added to the plot to reveal overlapping data points).

4.3.1 Is there any evidence that the complex generalization was learned?

As with Experiment 2, to probe whether the more complex generalization was also learned along
with the simple generalizations, we ran a Monte Carlo simulation. Here, too, we ran the simulations
with both probability models described in Section B.3.1]. (Again, see Supplementary Materials [A]

for an R script that reproduces these simulations.)
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Below, we present the results based on two sets of 1,000 simulations of the null models for
Experiment 3. Table |§ shows the results of the simulations. The second set of simulations for the
second probability model (that assumes averaging over the probabilities of all generalizations is
appropriate) is based on 10,000 replications (this value is italicized in the table). This was done
because the observed proportion in the first 1,000 replications was very close to the 0.05 threshold,

so we thought it prudent to get a larger set of interaction coefficients to compare with.

Probability Model 15t simulation 24 simulation
All generalizations evaluated together 0.2150 0.2360
One generalization evaluated at a time 0.0930 0.081218

Table 8: Proportion of interaction coefficients for data simulated from the null models that were
further away from the mean of the interaction coefficients than the actual interaction observed in

Experiment 3.

As with Experiment 2, there is no clear evidence of an interaction effect beyond the simple
model. There is at best a marginally significant effect, under the second probability model (that
assumes that the learner uses only one generalization at any one time during evaluation). But, if
one were to take the gamut of results, it is clear from Experiments 2 & 3, that our results support

the null models (i.e., the models with only the simple generalizations).

4.4 Discussion

In Experiment 3, we were able to replicate all the important aspects of the results in Experiment

2. First, there is a decrement in the preference for NewConsStims compared to NewWordStims,

!8This is based on 10,000 replications. Note, the proportion of values below the observed interaction coefficient
would be half the proportions presented in the table; however, these are effectively one-tailed p-values, which we think
are inappropriate given the direction of the interaction parameter in the experiment was not predicted to be less than
the mean of the interaction parameters for the simulated data a priori.

19Furthermore, the marginally significant effects are only for the probability model where the generalizations can be
used individually and mutually exclusively of one another while making an acceptability judgments, despite there being
multiple generalizations present as part of the grammar. This behavior is not possible to account for with phonological
grammars that have parallel architectures such as Optimality Theory and Harmonic Grammar.
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paralleling the decrement in preference for the NewStims in Experiment 2 compared to those in
Experiment 1. This suggests that there are other generalizations (possibly, consonant sequence
generalizations) that allowed the participants to rate the NewWordStims in Experiment 3 and the
NewStims in Experiment 1 so highly.

Second, the preference for the OnlyVoicing stimuli over Disharmony stimuli was just barely
statistically significant in Experiment 2, so it was important to see that the effect replicated; it was
indeed replicated in Experiment 3.

Finally, and most crucially, as in Experiment 2, the preference for the NewConsStims stim-
uli was no more than an additive effect of the preference for OnlyVoicing and OnlyContinuancy
stimuli. Therefore, this reinforces the finding that the learners in our experiments were simply not

learning the more complex generalization when simpler generalizations were available.

5 General discussion and conclusion

We presented the results of three ALL experiments that probed the question of what learners do
when faced with data that is consistent with multiple competing phonotactic generalizations. As
mentioned earlier, it is more insightful to break down the question into two sub-questions: (a) do
learners learn just a single generalization that is consistent with a specific segmental co-occurrence
pattern, or do they learn multiple (even all) possible generalizations; and (b) do learners learn the
simplest generalization or the most specific (therefore, most complex) generalization? Our results
suggest that learners are indeed able to keep track of multiple generalizations (Experiments 1, 2, &
3). However, this does not mean they keep track of a// available generalizations. While the results
of Experiment 1 appeared to suggest that learners could be learning more complex generalizations,
when the confounding possibility of using consonant sequence patterns was removed from the
relevant test items (NewStims in Experiment 2, and NewConsStims in Experiment 3), learners
showed no evidence of learning the more complex featural generalization; instead, participants

were only keeping track of the simplest generalizations, where simplest is defined as the use of the
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fewest representational primitives needed to state the generalization.

As briefly mentioned before in Section [I, in the interest of expository convenience, we have
conflated the terms ‘most complex’ and ‘most specific’, where the former refers to the intensional
description, while the latter refers to the extension set. Crucially, the learners in our experiments
are able to learn both simple featural generalizations and segment based generalization, but do not
seem to be able to learn the complex featural generalization. The fact that learners learn multiple
simple featural generalizations but are unable to learn the complex featural generalization suggests
that simplicity is an important notion in understanding learnable/unlearnable patterns. In contrast,
the fact that the learner is able to learn both the most specific segmental generalizations and the
least specific single feature generalizations, but is unable to learn the complex feature generaliza-
tion (which is in between on the specificity scale) suggests that specificity is not a useful notion
in understanding learnable/unlearnable patterns. To reiterate, our experiments suggest that the
notion of simplicity is of relevance to the learner, but not the notion of specificity.

It is important to note that the results cannot be accounted for by just saying simpler generaliza-
tions are easier to learn (Cristia and Seidl 2008; Kuo 2009; Pycha et al. 2003; Saffran and Thiessen
2003). Such a statement is insufficient to account for the results as there was ample training data2l
provided to participants to learn the more complex generalization (compared to previous research
that showed that complex generalizations appear to be learned, when there is no competition with
simpler generalizations). Therefore, even by this view, the complex generalization could still have

been learned, albeit with less weight attached to it. If so, there should have been a super-additive

20Ty the extent that more specific grammars are favored as a matter of fact by the math behind Bayesian inference
(cf. the Size Principle; Linzen and O’Donnell 2015; Tenenbaum and Griffiths 2001; Xu and Tenenbaum 2007), this
may tell against some of the predictions of Bayesian models of learning. This may be due to the fact Bayesian models
are not necessarily incremental/algorithmic models of learning, but rather computational-level models; this is worth
further investigating.

21 We say the training data was ample compared to other ALL experiments. Of course, to defend any particular
hypothesis, one could always say that it is an insufficient number of training items and insufficient number of training
segments in the items. In which case, we think the onus is on such researchers to specify what constitutes sufficient
training data to falsify the hypothesis. For example, there could be a strong prior bias against a grammar with the
conjoined feature rule, and we would only see evidence for the learning of this conjoined feature rule if participants
received more data. This may be true, but this could always be true in the absence of a clear statement of what one
thinks the magnitude of the prior bias is. In particular, in the absence of an idea of what the magnitude of the bias
against a conjoined feature rule might be, we don’t think it’s a fruitful discussion to have.
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effect observed in participants’ preference for the relevant NewStims (or NewConsStims) stimuli
in Experiments 2 & 3. Furthermore, some have suggested that the learning bias for simpler gen-
eralizations stems from what amounts to a sampling bias (Pierrehumbert 2001a,b). Pierrehumbert
suggested that one reason simpler generalizations are learned more than more complex ones is pos-
sibly due to more complex generalizations requiring a more specific set of data to be confirmed, and
random sampling might not allow the learner to experience that particular set of data. However, in
our experiments, the amount of training data that supported the more complex generalization was
equal to the amount of training data that supported the simpler generalizations; therefore, it is clear
the bias observed cannot be reduced to a sampling bias in the input data.

There are four other issues that we wish to touch upon. First, how do we square our results
with those of Linzen and Gallagher (2014, 2017) and Gerken (2006)) who argue that their results
suggest that learners might be learning more complex (or specific) generalizations? As a reviewer
points out (and in our opinion), it is reasonable to reinterpret Gerken’s (2006) results as showing
that learners need stimulus variation to infer a more abstract generalization. For, if the learner were
simply holding on to the subset grammar, they could still have memorized all the possible final
syllables. Furthermore, what needs to be pointed out in each of the above papers is that the spe-
cific or more complex generalizations involved mixing representational primitives. For example,
in the case of Linzen and Gallagher (2014, 2017), their specific generalization involved segments,
while the simpler one involved features. However, the specific one is only more complex under the
assumption that segments are not representational primitives by themselves and are nothing more
than a collection of features. If this assumption is wrong, then equating specificity to the notion
of complexity is not correct for their experiments.@ As we showed in our experiments, when the
possibility of segment sequence generalizations was removed (Experiments 2 & 3), there was no
more evidence for the claim that learners were keeping track of more complex (featural) general-
izations. Similarly, Gerken (2006) also compared a simple syllabic generalization (AAB) versus

one that involved both syllables and segments (AAdi). Given that the putative complex general-

22We do not attribute this ‘error’ to Linzen and Gallagher (2014, 2017). It is important to reiterate here that their
results were interpreted as possible evidence for the Proportional to Simplicity viewpoint by the authors of this article.
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ization involved both syllables and segments, it is possible that the more complex generalization
is actually decomposable into simpler generalizations involving syllables and segments separately.
What we wish to primarily highlight from this discussion is that in order to test the learnability of
simple vs. complex generalizations, the class of representational primitives used in the two types
of generalizations needs to be kept constant, as was done in our Experiments 2 & 3. Otherwise, it
is difficult to draw firm conclusions from the results, whatever they may be.

Second, how do we square the results with those of Finley (2011, 2012), Lai (2015), and Mc-
Mullin (2016) whose results suggests that learners appear to be unwillingly to accept a seemingly
more general non-local pattern across both vowels and consonants (“second order non-local””) when
trained on a transvocalic (“first order local”) pattern but are willing to accept a transvocalic pat-
tern, when trained on a more general non-local pattern?@ In our opinion, these results are actually
unclear with respect to the issue of simplicity. The crux of the argument in such experiments is
contingent on comparing against chance (0.5) and inferring that a generalization has not been used
in novel contexts if the acceptability proportion is around 0.5; however, it is not clear that a pro-
portion of 0.5 is the appropriate representation of chance (as the stimuli have other patterns in them
that are consistent with the training data); instead the results should be seen in relative terms in our
opinion. That is, when trained on transvocalic patterns, participants accept transvocalic patterns
more than the more general pattern, but when trained on the more general (trans-segmental) pat-
tern, there is no such clear difference. If the results are seen in this light, we can in fact reinterpret
the results. Following Heinz (2010), if a learner is equipped with the ability to learn both n-gram
generalizations (up to a suitable “n”’; see Cowan (2010) for an argument that the n~4 for short-term
memory generally) and separate precedence/piecewise generalizations which make no reference
to locality, then, when presented with training stimuli with transvocalic harmony, learners could
represent them with both an n-gram generalization and a precedence generalization, and as a con-
sequence, during testing, the transvocalic stimuli are going to get an additive effect on acceptance

from both the types of generalizations, while the more general (trans-segmental) generalizations

231t is worth remembering that in the second order non-local case, the patterns were across VCV contexts (so,
_VCV_), while in the first order local case, the patterns were across a single V (so, _V_).
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are acceptable only due to the precedence grammar. In effect, we expect the latter to be more
acceptable than the former. In contrast, when presented with the trans-segmental pattern during
training, the learner can only learn the precedence generalization; as a consequence, during testing,
they show no difference between the transvocalic and trans-segmental patterns.

Third, the fact that learners keep track of only the simplest generalization(s) consistent with
the data in the face of ambiguity suggests that there is a certain structure to the search space of
possible generalizations, as touched upon by Chomsky and Halle (1968) and Hayes and Wilson
(2008); this structure, if present, dramatically decreases the computational challenge faced by the
learner.2d Such a view leads to a slight reinterpretation of previous ALL results that suggest that
simpler generalizations are easier to learn than more complex generalizations (Cristia and Seidl
2008; Kuo 2009; Pycha et al. 2003; Saffran and Thiessen 2003). More specifically, the results
presented in this article suggest that the reason simpler generalizations appear to be learned better
in previous ALL experiments is that learners attempt to learn simpler generalizations first, and,
only in the absence of viable simpler generalizations, do they attempt to learn more complex ones.

Fourth, a more speculative possibility, one that takes a substantial inductive leap from our re-
sults, is that learners are only able to keep track of simple phonotactic generalizations, by which we
mean generalizations that involve the precedence relationships between at most a single pair of fea-
tures, segments, syllables, etc.. Therefore, the issue of complex vs. simple learned generalizations
itself would vanish, as the learner simply cannot keep track of complex generalizations (of the rel-
evant type).B For example, learners might be able to keep track of precedence relationships such
as [featurel]...[feature2], or [segmentl]...[segment2], etc., but not precedence relationships in-
volving more than that, such as [featurel,feature3]...[feature2,feature3], or in the case of segments
[segmentl]...[segment2]...[segment3]. Such a possibility would automatically explain why our
experiments found no evidence for learners learning the complex generalization. It would further

suggest that the reason previous experiments seemed to show learning of a complex generalization

Z4However, this is not to say that the learning task in any sense has become trivial or ‘easy’.
23Note, a similar sentiment that simple (and even categorical) models of phonotactics can account for the extant data
on word-acceptability judgments was discussed by Gorman (2013).
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was just because they did not—or could not, given their design—test whether their results were
merely the additive result of multiple simple generalizations. As mentioned above, this possibility
requires a big inductive leap from the results presented in this article and should at this point be
seen as a speculation that is, at best, worthy of future analytical/experimental consideration.

In conclusion, we would like to reiterate the primary findings in the article. In the face of
data that is ambiguous between many phonotactic sequence generalizations, learners keep track of

multiple generalizations, as long as they are all the simplest possible generalizations.
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A Code for Monte Carlo simulation

library(tidyverse)

library(1me4)

#Step 1: Functions for different probability models of acceptance —-—-——--

generalizations_evaluated_together <- function(data) {
#Equations to be solwved
#ungrammatical under both generalizations
#prob_vyes_for_disharmonic =
# 1 - (prob_no_if_ungrammatical * prob_no_if_ungrammatical)
#log(prob_no_if_ungrammatical) = log(1-prob_yes_for_disharmonic) / 2
prob_no_if ungrammatical <-

exp(log(l - data$Mean_Yes[data$TYPE == "Disharmony"]) / 2)

#grammatical under the voicing generalization
#prob_yes_for_onlyVoice =
# 1 - (prob_no_if_gramm_by_wvoice * prob_no_<if_ungrammatical)
#log(prob_mo_<if_gramm_by_wvoice) + log(prob_no_if ungrammatical) =
# log(1 - prob_yes_for_onlyVoice)
prob_no_if gramm by voice <-

exp(log(l - data$Mean_Yes[data$TYPE == "OnlyVoicing"]) -

log(prob_no_if ungrammatical))

#grammatical under the continuancy generalization
#prob_vyes_for_onlyCont =

# 1 - (prob_no_<f_ungrammatical * prob_no_if_gramm_by_cont)
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#log(prob_mo_if_gramm_by_cont) + log(prob_no_if ungrammatical) =
# log(1 - prob_yes_for_onlyCont)
prob_no_if_gramm by _cont <-

exp(log(1l - data$Mean_Yes[data$TYPE == "OnlyCont"]) -

log(prob_no_if_ ungrammatical))

#Get the yes probabilities
prob_yes_if ungrammatical <- 1 - prob_no_if ungrammatical
prob_yes_if gramm by_voice <- 1 - prob_no_if gramm by_voice

prob_yes_if gramm by _cont <- 1 - prob_no_if gramm by_cont

#Generate probabilities from above model
#ungrammatical under both generalizations
prob_yes_for_disharmonic <- 1 - (prob_no_if ungrammatical *
prob_no_if ungrammatical)
#grammatical under the voicing generalization
prob_yes_for_onlyVoice <- 1 - (prob_no_if ungrammatical *
prob_no_if gramm_by_voice)
#grammatical under the continuancy generalization
prob_yes_for_onlyCont <- 1 - (prob_no_if ungrammatical *
prob_no_if gramm_by_cont)
#grammatical under both simple generalizations
prob_yes_for_newStim <- 1 - (prob_no_if gramm_by_voice *

prob_no_if gramm_by_cont)

#Return the probabilities that a participant says a word s

#acceptable, depending on the nature of the word
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data.frame(prob_yes_for_disharmonic=prob_yes_for_disharmonic,
prob_yes_for_onlyVoice=prob_yes_for_onlyVoice,
prob_yes_for_onlyCont=prob_yes_for_onlyCont,

prob_yes_for_newStim=prob_yes_for_newStim)

generalizations_evaluated_one_at_a_time <- function(data) {
#Equations to be solwved
#ungrammatical under both generalizations
#prob_vyes_for_disharmonic =
# ((1 - prob_no_if_ungrammatical) +
# (1 - prob_no_if_ungrammatical)) / 2
prob_no_if ungrammatical <-

(1 - data$Mean_Yes[data$TYPE == "Disharmony"])

#grammatical under the voicing generalization
#prob_vyes_for_onlylVoice =
# ((1 - prob_mo_1if_gramm_by_voice) +
# (1 - prob_no_if_ungrammatical)) / 2
#2 * prob_yes_for_onlylVoice =
# 2 - prob_mo_<if_gramm_by_voice - prob_mno_tf_ungrammatical
#prob_mo_1tf_gramm_by_voice =
# 2 - 2 * prob_yes_for_onlylVoice - prob_no_<if_ungrammatical
prob_no_if_gramm by voice <- 2 -

2 * data$Mean_ Yes[data$TYPE == "OnlyVoicing"] -

prob_no_if ungrammatical
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#grammatical under the continuancy generalization
#prob_vyes_for_onlyCont =
# ((1 - prob_mno_if_gramm_by_cont) +
# (1 - prob_no_<f_ungrammatical)) / 2
#2 * prob_vyes_for_onlyCont =
# 2 - prob_mo_if_gramm_by_cont - prob_no_tf_ungrammatical
#prob_no_tf_gramm_by_cont =
# 2 - 2 * prob_yes_for_onlyCont - prob_no_<f_ungrammatical
prob_no_if gramm by_cont <- 2 -

2 * data$Mean_Yes[data$TYPE == "OnlyCont"] -

prob_no_if_ ungrammatical

#Get the yes probabilities
prob_yes_if ungrammatical <- 1 - prob_no_if ungrammatical
prob_yes_if gramm by_voice <- 1 - prob_no_if gramm by_voice

prob_yes_if_gramm by_cont <- 1 - prob_no_if_ gramm_by_cont

#Generating probabilities from above model
#ungrammatical under both generalizations
prob_yes_for_disharmonic <- ((1 - prob_no_if ungrammatical) +
(1 - prob_no_if ungrammatical)) / 2

#grammatical under the voicing generalization
prob_yes_for_onlyVoice <- ((1 - prob_no_if_ gramm by _voice) +

(1 - prob_no_if_ ungrammatical)) / 2
#grammatical under the continuancy generalization
prob_yes_for_onlyCont <- ((1 - prob_no_if_gramm by_cont) +

(1 - prob_no_if ungrammatical)) / 2
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#grammatical under both simple generalizations
prob_yes_for_newStim <- ((1 - prob_no_if gramm by_voice) +

(1 - prob_no_if_gramm by_cont)) / 2

#Return the probabilities that a participant says a word s

#acceptable, depending on the nature of the word

data.frame(prob_yes_for_disharmonic=prob_yes_for_disharmonic,
prob_yes_for_onlyVoice=prob_yes_for_onlyVoice,
prob_yes_for_onlyCont=prob_yes_for_onlyCont,

prob_yes_for_newStim=prob_yes_for_newStim)

#Step 2: Fit probabilities based on models to observed data -————-———-—-—--

exp2_data_summarized <-
data.frame(TYPE = c("Disharmony", "OnlyVoicing", "OnlyCont",
"NewStims", "01ldStims"),
Mean _Yes = c(0.532, 0.57, 0.614, 0.653, 0.898),

SE_Yes = ¢(0.0253, 0.0269, 0.025, 0.0281, 0.0140))

exp3_data_summarized <-
data.frame(TYPE = c("Disharmony", "OnlyVoicing", "OnlyCont",
"NewCStims", "NewWStims", "0ldStims"),
Mean_Yes = c¢(0.467, 0.563, 0.58, 0.616, 0.824, 0.867),

SE_Yes = ¢(0.0336, 0.0307, 0.0266, 0.0302, 0.0239, 0.022))

exp2_evaluated_together_predictions <-
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generalizations_evaluated_together (exp2_data_summarized)

exp2_evaluated_one_at_a_time_predictions <-

generalizations_evaluated_one_at_a_time(exp2_data_summarized)

exp3_evaluated_together_predictions <-

generalizations_evaluated_together (exp3_data_summarized)

exp3_evaluated_one_at_a_time_predictions <-

generalizations_evaluated_one_at_a_time(exp3_data_summarized)

#Step 3: Simulate data and fit logisitic regression to results ————————-

#Function for simulating judgment data
simulate_judgments <- function(num_participants,
num_items_per_type,
probability model predictions,
conditions) {
TYPE = rep(conditions, num_items_per_type)
judgments = data.frame(participant = rep(c(l:num_participants),
each = num_items_per_type *
length(conditions)),

TYPE = rep(TYPE, each = num_participants))

#Simulate acceptability responses
judgments <- judgments 7>/

#Ensure each row gets a different random number
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rowwise() %>%
mutate (Random Number = runif (1)) %>%
ungroup() %>%
mutate(response = case_when(
TYPE == conditions[1] ~ Random_Number <=
probability model predictions$prob_yes_for_disharmonic,
TYPE == conditions[2] ~ Random_Number <=
probability_model_ predictions$prob_yes_for_onlyVoice,
TYPE == conditions[3] ~ Random_ Number <=
probability _model predictions$prob_yes_for_onlyCont,
TYPE == conditions[4] ~ Random_ Number <=
probability_model_predictions$prob_yes_for_newStim,
TRUE ~ NA)) %>

mutate(response = as.numeric(response))

judgments

#Function for running simulations

run_simulations <- function(num_simulations,
seed,
num_participants,
num_items_per_type,
probability model predictions,
conditions) {

Al1BetaValuesIfNullTrue=NULL

for(i in 1:num_simulations) {
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if(!is.null(seed)) {
set.seed(seed * i + i)
}
message ("Running simulation number ", i)
sim_data <- simulate_judgments(num_participants,
num_items_per_type,
probability model predictions,
conditions) %>
#Add coding for model

mutate(Voicing = case_when(

TYPE == "NewStims" | TYPE == "NewCStims" |
TYPE == "OnlyVoicing" ~ 1,
TRUE ~ 0),

Stopping = case_when(

TYPE == "NewStims" | TYPE == "NewCStims" |
TYPE == "OnlyCont" ~ 1,
TRUE ~ 0),

Voicing = factor(Voicing),

Stopping = factor(Stopping))

message ("Fitting model for simulation number ", i)
model <- glmer(data = sim_data,
response ~ Voicing * Stopping + (1|participant),

family = binomial())

#Get coefficients from model

Al1BetaValuesIfNullTrue <- rbind(AllBetaValuesIfNullTrue,
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coef (model) $participant [1, ])
}

Al1BetaValuesIfNullTrue

#Run two different experiment 2 simulations
#Note that seed can be set to NULL or some other number for different
#simulations
exp2_evaluated_together_simulated_betas_1 <-
run_simulations(num_simulations = 1000,
seed = 1234,
num_participants = 63,
num_items_per_type = 12,
probability model predictions =
exp2_evaluated_together_predictions,
conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewStims"))

exp2_evaluated_one_at_a_time_simulated_betas_1 <-
run_simulations(num_simulations = 1000,
seed = 1234,
num_participants = 63,
num_items_per_type = 12,
probability _model predictions =
exp2_evaluated_one_at_a_time_predictions,
conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewStims"))
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exp2_evaluated_together_simulated_betas_2 <-

run_simulations(num_simulations = 1000,
seed = 5678,
num_participants = 63,
num_items_per_type = 12,
probability _model predictions =

exp2_evaluated_together_predictions,

conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewStims"))

exp2_evaluated_one_at_a_time_simulated_betas_2 <-
run_simulations(num_simulations = 1000,
seed = 5678,
num_participants = 63,
num_items_per_type = 12,
probability model predictions =
exp2_evaluated_one_at_a_time_predictions,
conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewStims"))

#Run two different exzperiment 3 simulations

#Note that seed can be set to NULL or some other number for different

#simulations

exp3_evaluated_together_simulated_betas_1 <-
run_simulations(num_simulations = 1000,

seed = 1234,
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num_participants = 51,

num_items_per_type = 10,

probability_model predictions =
exp3_evaluated_together_predictions,

conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewCStims"))

exp3_evaluated_one_at_a_time_simulated_betas_1 <-
run_simulations(num_simulations = 1000,
seed = 1234,
num_participants = 51,
num_items_per_type = 10,
probability_model_predictions =
exp3_evaluated_one_at_a_time_predictions,
conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewCStims"))

exp3_evaluated_together_simulated_betas_2 <-
run_simulations(num_simulations = 1000,
seed = 5678,
num_participants = 51,
num_items_per_type = 10,
probability_model predictions =
exp3_evaluated_together_predictions,
conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewCStims"))

60



exp3_evaluated_one_at_a_time_simulated_betas_2 <-
run_simulations(num_simulations = 10000,
seed = 5678,
num_participants = 51,
num_items_per_type = 10,
probability model predictions =
exp3_evaluated_one_at_a_time_predictions,
conditions = c("Disharmony", "OnlyVoicing",

"OnlyCont", "NewCStims"))

#Step 4: Get interaction coefficient from actual data —————————————————-

#These are the interaction terms from models of the actual data
exp2_interaction_term <- 0.0147592

exp3_interaction_term <- -0.2890619

#Step 5: Actual interaction term further away from simulated mean? —--—--

get_prop_further <- function(sim_betas,
actual_interaction,
alternative = "two.sided") {
#What proportion of interaction terms for the data based on the null
#models are further away than the actual experimental resultis?
if (alternative == "one.sided") {
prop <- sum(sim_betas[, c("Voicingl:Stoppingl")] >

actual interaction) / NROW(sim_betas)
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#What proportion of interaction terms from the simulated data based on
#the null probability models are further away from the mean simulated
#interaction term than the interaction term from the actual
#experimental results?
else if (alternative == "two.sided") {
centered_sim_interaction_terms <-
scale(sim_betas[, c("Voicingl:Stoppingl")],
scale = FALSE) 7>
as.vector()
centered_actual_interaction_term <- actual_interaction -
mean(sim_betas[, c("Voicingl:Stoppingl")])
prop <- sum(abs(centered_sim_interaction_terms) >
abs(centered actual interaction term)) /
NROW(sim_betas)
} else {

stop("alternative argument must be 'one.sided' or 'two.sided'")

prop

exp2_sim_results <-
data.frame(
ProbabilityModel =
c(rep("All generalizations evaluated together", 2),
rep("One generalization evaluated at a time", 2)),
Simulation = rep(c("First", "Second"), 2),

PropSimulatedInteractionsFurtherAway =
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c(get_prop_further(exp2_evaluated_together simulated betas_1,
exp2_interaction_term),
get_prop_further(exp2_evaluated_together_simulated_betas_2,
exp2_interaction_term),
get_prop_further(exp2_evaluated_one_at_a_time_simulated_betas_1,
exp2_interaction_term),
get_prop_further(exp2_evaluated_one_at_a_time_simulated_betas_2,

exp2_interaction_term)))

exp3_sim_results <-
data.frame(
ProbabilityModel =
c(rep("All generalizations evaluated together", 2),
rep("One generalization evaluated at a time", 2)),
Simulation = rep(c("First", "Second"), 2),
PropSimulatedInteractionsFurtherAway =
c(get_prop_further(exp3_evaluated_together simulated betas_1,
exp3_interaction_term),
get_prop_further(exp3_evaluated_together simulated _betas_2,
exp3_interaction_term),
get_prop_further(exp3_evaluated_one_at_a_time_simulated_betas_1,
exp3_interaction_term),
get_prop_further(exp3_evaluated_one_at_a_time_simulated_betas_2,

exp3_interaction_term)))

#Table 5 in paper

print (exp2_sim_results)
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#Table 8 in paper

print (exp3_sim_results)
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